6 research outputs found

    Dynamical control of matter-wave tunneling in periodic potentials

    Full text link
    We report on measurements of dynamical suppression of inter-well tunneling of a Bose-Einstein condensate (BEC) in a strongly driven optical lattice. The strong driving is a sinusoidal shaking of the lattice corresponding to a time-varying linear potential, and the tunneling is measured by letting the BEC freely expand in the lattice. The measured tunneling rate is reduced and, for certain values of the shaking parameter, completely suppressed. Our results are in excellent agreement with theoretical predictions. Furthermore, we have verified that in general the strong shaking does not destroy the phase coherence of the BEC, opening up the possibility of realizing quantum phase transitions by using the shaking strength as the control parameter.Comment: 5 pages, 3 figure

    Observation of photon-assisted tunneling in optical lattices

    Full text link
    We have observed tunneling suppression and photon-assisted tunneling of Bose-Einstein condensates in an optical lattice subjected to a constant force plus a sinusoidal shaking. For a sufficiently large constant force, the ground energy levels of the lattice are shifted out of resonance and tunneling is suppressed; when the shaking is switched on, the levels are coupled by low-frequency photons and tunneling resumes. Our results agree well with theoretical predictions and demonstrate the usefulness of optical lattices for studying solid-state phenomena.Comment: 5 pages, 3 figure

    AC-induced superfluidity

    Full text link
    We argue that a system of ultracold bosonic atoms in a tilted optical lattice can become superfluid in response to resonant AC forcing. Among others, this allows one to prepare a Bose-Einstein condensate in a state associated with a negative effective mass. Our reasoning is backed by both exact numerical simulations for systems consisting of few particles, and by a theoretical approach based on Floquet-Fock states.Comment: Accepted for publication in Europhysics letters, 6 pages, 4 figures, Changes in v2: reference 7 replaced by a more recent on

    Dynamical control of tunneling in periodic potentials

    No full text
    corecore