6,118 research outputs found
Kinetics of the Phase Separation Transition in Cold-Atom Boson-Fermion Mixtures
We study the kinetics of the first order phase separation transition in
boson-fermion cold-atom mixtures. At sufficiently low temperatures such a
transition is driven by quantum fluctuations responsible for the formation of
critical nuclei of a stable phase. Based on a microscopic description of
interacting boson-fermion mixtures we derive an effective action for the
critical droplet and obtain an asymptotic expression for the nucleation rate in
the vicinity of the phase transition and near the spinodal instability of the
mixed phase. We also discuss effects of dissipation which play a dominant role
close to the transition point, and identify the regimes where quantum
nucleation can be experimentally observed in cold-atom systems.Comment: 4 pages 1 figure, typos correcte
Comment on "Phonon Spectrum and Dynamical Stability of a Dilute Quantum Degenerate Bose-Fermi Mixture
We show that the conclusions of a recent PRL by Pu et al is incorrect.Comment: late
Casimir Force between a Small Dielectric Sphere and a Dielectric Wall
The possibility of repulsive Casimir forces between small metal spheres and a
dielectric half-space is discussed. We treat a model in which the spheres have
a dielectric function given by the Drude model, and the radius of the sphere is
small compared to the corresponding plasma wavelength. The half-space is also
described by the same model, but with a different plasma frequency. We find
that in the retarded limit, the force is quasi-oscillatory. This leads to the
prediction of stable equilibrium points at which the sphere could levitate in
the Earth's gravitational field. This seems to lead to the possibility of an
experimental test of the model. The effects of finite temperature on the force
are also studied, and found to be rather small at room temperature. However,
thermally activated transitions between equilibrium points could be significant
at room temperature.Comment: 16 pages, 5 figure
Anomalous galvanomagnetism, cyclotron resonance and microwave spectroscopy of topological insulators
The surface quantum Hall state, magneto-electric phenomena and their
connection to axion electrodynamics have been studied intensively for
topological insulators. One of the obstacles for observing such effects comes
from nonzero conductivity of the bulk. To overcome this obstacle we propose to
use an external magnetic field to suppress the conductivity of the bulk
carriers. The magnetic field dependence of galvanomagnetic and electromagnetic
responses of the whole system shows anomalies due to broken time-reversal
symmetry of the surface quantum Hall state, which can be used for its
detection. In particular, we find linear bulk dc magnetoresistivity and a
quadratic field dependence of the Hall angle, shifted rf cyclotron resonance,
nonanalytic microwave transmission coefficient and saturation of the Faraday
rotation angle with increasing magnetic field or wave frequency.Comment: 5 pages, 3 figures, version as publishe
Surface-atom force out of thermal equilibrium and its effect on ultra-cold atoms
The surface-atom Casimir-Polder-Lifshitz force out of thermal equilibrium is
investigated in the framework of macroscopic electrodynamics. Particular
attention is devoted to its large distance limit that shows a new, stronger
behaviour with respect to the equilibrium case. The frequency shift produced by
the surface-atom force on the the center-of-mass oscillations of a harmonically
trapped Bose-Einstein condensate and on the Bloch oscillations of an ultra-cold
fermionic gas in an optical lattice are discussed for configurations out of
thermal equilibrium.Comment: Submitted to JPA Special Issue QFEXT'0
Thermal van der Waals Interaction between Graphene Layers
The van de Waals interaction between two graphene sheets is studied at finite
temperatures. Graphene's thermal length controls
the force versus distance as a crossover from the zero temperature
results for , to a linear-in-temperature, universal regime for
. The large separation regime is shown to be a consequence of the
classical behavior of graphene's plasmons at finite temperature. Retardation
effects are largely irrelevant, both in the zero and finite temperature
regimes. Thermal effects should be noticeable in the van de Waals interaction
already for distances of tens of nanometers at room temperature.Comment: enlarged version, 9 pages, 4 figures, updated reference
Vector and tensor perturbations in Horava-Lifshitz cosmology
We study cosmological vector and tensor perturbations in Horava-Lifshitz
gravity, adopting the most general Sotiriou-Visser-Weinfurtner generalization
without the detailed balance but with projectability condition. After deriving
the general formulas in a flat FRW background, we find that the vector
perturbations are identical to those given in general relativity. This is true
also in the non-flat cases. For the tensor perturbations, high order
derivatives of the curvatures produce effectively an anisotropic stress, which
could have significant efforts on the high-frequency modes of gravitational
waves, while for the low-frenquency modes, the efforts are negligible. The
power spectrum is scale-invariant in the UV regime, because of the particular
dispersion relations. But, due to lower-order corrections, it will eventually
reduce to that given in GR in the IR limit. Applying the general formulas to
the de Sitter and power-law backgrounds, we calculate the power spectrum and
index, using the uniform approximations, and obtain their analytical
expressions in both cases.Comment: Correct some typos and add new references. Version to be published in
Physical Reviews
Magnetic spectrum of trigonally warped bilayer graphene - semiclassical analysis, zero modes, and topological winding numbers
We investigate the fine structure in the energy spectrum of bilayer graphene
in the presence of various stacking defaults, such as a translational or
rotational mismatch. This fine structure consists of four Dirac points that
move away from their original positions as a consequence of the mismatch and
eventually merge in various manners. The different types of merging are
described in terms of topological invariants (winding numbers) that determine
the Landau-level spectrum in the presence of a magnetic field as well as the
degeneracy of the levels. The Landau-level spectrum is, within a wide parameter
range, well described by a semiclassical treatment that makes use of
topological winding numbers. However, the latter need to be redefined at zero
energy in the high-magnetic-field limit as well as in the vicinity of saddle
points in the zero-field dispersion relation.Comment: 17 pages, 16 figures; published version with enhanced discussion of
experimental finding
Generalized Lifshitz-Kosevich scaling at quantum criticality from the holographic correspondence
We characterize quantum oscillations in the magnetic susceptibility of a
quantum critical non-Fermi liquid. The computation is performed in a strongly
interacting regime using the nonperturbative holographic correspondence. The
temperature dependence of the amplitude of the oscillations is shown to depend
on a critical exponent nu. For general nu the temperature scaling is distinct
from the textbook Lifshitz-Kosevich formula. At the `marginal' value nu = 1/2,
the Lifshitz-Kosevich formula is recovered despite strong interactions. As a
by-product of our analysis we present a formalism for computing the amplitude
of quantum oscillations for general fermionic theories very efficiently.Comment: 18 pages, pdftex, 1 figure. v2: figure and few comments adde
Strain rate, temperature, and humidity on strength and moduli of a graphite/epoxy composite
Results of an experimental study of the influence of strain rate, temperature and humidity on the mechanical behavior of a graphite/epoxy fiber composite are presented. Three principal strengths (longitudinal, transverse and shear) and four basic moduli (E1, E2, G12 and U12) of a unidirectional graphite/epoxy composite were followed as a function of strain rate, temperature and humidity. Each test was performed at a constant tensile strain rate in an environmental chamber providing simultaneous temperature and humidity control. Prior to testing, specimens were given a moisture preconditioning treatment at 60 C. Values for the matrix dominated moduli and strength were significantly influenced by both environmental and rate parameters, whereas the fiber dominated moduli were not. However, the longitudinal strength was significantly influenced by temperature and moisture content. A qualitative explanation for these observations is presented
- …