191 research outputs found

    Effects of a Local Interstellar Magnetic Field on Voyager 1 and 2 Observations

    Get PDF
    We show that that an interstellar magnetic field can produce a north/south asymmetry in solar wind termination shock. Using Voyager 1 and 2 measurements, we suggest that the angle α\alpha between the interstellar wind velocity and magnetic field is 30∘<α<60∘30^{\circ} < \alpha < 60^{\circ}. The distortion of the shock is such that termination shock particles could stream outward along the spiral interplanetary magnetic field connecting Voyager 1 to the shock when the spacecraft was within ∼2 AU\sim 2~AU of the shock. The shock distortion is larger in the southern hemisphere, and Voyager 2 could be connected to the shock when it is within ∼5 AU\sim 5~AU of the shock, but with particles from the shock streaming inward along the field. Tighter constraints on the interstellar magnetic field should be possible when Voyager 2 crosses the shock in the next several years.Comment: 12 pages, 5 figure

    Fiber-Based Interferometry and Imaging

    Get PDF
    Single-mode optical fibers are playing an increasing role in astronomical interferometry, e.g., in high-accuracy visibility measurements and in nulling interferometry. However, such observing modes typically involve only small numbers of fibers. On the other hand, some recently proposed observing techniques call for arrays of single mode fibers coupled to arrays of sub-apertures within a large telescope pupil. The concepts include pupil-masked visibility measurements (non-redundant masking), pupil-sheared nulling interferometry, and coronagraphic imaging using a fiber-linked phased-array of small optical telescopes. The latter arrangement may also be relevant to optical communications. Here we provide an overview of a number of recent novel applications of single-mode fibers and single-mode fiber arrays

    Temperature fluctuations and heat transport in the edge regions of a tokamak

    Get PDF
    Electron temperature fluctuations have been investigated in the edge region of the Caltech research tokamak [S. J. Zweben and R. W. Gould, Nucl. Fusion 25, 171 (1985)], and an upper limit to this fluctuation level was found at Te/Te <~ 15%. This measurement, together with previous measurements of density and electric and magnetic field fluctuations, allows a unique comparison of the heat transport resulting from three basic turbulent mechanisms: (1) heat flux from the particle flux resulting from microscopic density and electric field fluctuations; (2) thermal conduction resulting from microscopic temperature and electric field fluctuations; and (3) thermal conduction resulting from microscopic magnetic field fluctuations. The measurements indicate that, in the edge regions, the electron heat transport caused by the measured turbulence-induced particle flux is comparable to or greater than that caused by the thermal conduction associated with the electron temperature and electric field fluctuations, and is significantly greater than that resulting from the measured magnetic fluctuations. This electron heat loss caused by the plasma turbulence is found to be an important electron energy loss mechanism in the edge regions

    New Constraints on Companions and Dust within a Few AU of Vega

    Get PDF
    We report on high contrast near-infrared (~2.2 μm) observations of Vega obtained with the Palomar Fiber Nuller, a dual sub-aperture rotating coronagraph installed at the Palomar Hale telescope. The data show consistent astrophysical null depth measurements at the 10^(–3) level or below for three different baseline orientations spanning 60 deg in azimuth, with individual 1σ uncertainties ≤7 × 10^(–4). These high cancellation and accuracy levels translate into a dynamic range greater than 1000:1 inside the diffraction limit of the 5 m telescope beam. Such high contrast performance is unprecedented in the near-infrared and provides improved constraints on Vega's immediate ( 20 to 250 mas, or 0.15 to 2 AU) environment. In particular, our measurements rule out any potential companion in the [0.25-1 AU] region contributing more than 1% of the overall near-infrared stellar flux, with limits as low as 0.2% near 0.6 AU. These are the best upper limits established so far by direct detection for a companion to Vega in this inner region. We also conclude that any dust population contributing a significant (≥1%) near-infrared thermal excess can arise only within 0.2 AU of the star, and that it must consist of much smaller grains than in the solar zodiacal cloud. Dust emission from farther than 2 AU is also not ruled out by our observations, but would have to originate in strong scattering, pointing again to very small grains

    Improving Interferometric Null Depth Measurements using Statistical Distributions: Theory and First Results with the Palomar Fiber Nuller

    Get PDF
    A new "self-calibrated" statistical analysis method has been developed for the reduction of nulling interferometry data. The idea is to use the statistical distributions of the fluctuating null depth and beam intensities to retrieve the astrophysical null depth (or equivalently the object's visibility) in the presence of fast atmospheric fluctuations. The approach yields an accuracy much better (about an order of magnitude) than is presently possible with standard data reduction methods, because the astrophysical null depth accuracy is no longer limited by the magnitude of the instrumental phase and intensity errors but by uncertainties on their probability distributions. This approach was tested on the sky with the two-aperture fiber nulling instrument mounted on the Palomar Hale telescope. Using our new data analysis approach alone-and no observations of calibrators-we find that error bars on the astrophysical null depth as low as a few 10-4 can be obtained in the near-infrared, which means that null depths lower than 10-3 can be reliably measured. This statistical analysis is not specific to our instrument and may be applicable to other interferometers

    Self-organization in turbulence as a route to order in plasma and fluids

    Full text link
    Transitions from turbulence to order are studied experimentally in thin fluid layers and magnetically confined toroidal plasma. It is shown that turbulence self-organizes through the mechanism of spectral condensation. The spectral redistribution of the turbulent energy leads to the reduction in the turbulence level, generation of coherent flow, reduction in the particle diffusion and increase in the system's energy. The higher order state is sustained via the nonlocal spectral coupling of the linearly unstable spectral range to the large-scale mean flow. The similarity of self-organization in two-dimensional fluids and low-to-high confinement transitions in plasma suggests the universality of the mechanism.Comment: 5 pages, 4 figure

    Exploring Intermediate (5-40 au) Scales around AB Aurigae with the Palomar Fiber Nuller

    Get PDF
    We report on recent Ks-band interferometric observations of the young pre-main-sequence star AB Aurigae obtained with the Palomar Fiber Nuller (PFN). Reaching a contrast of a few 10^−4 inside a field of view extending from 35 to 275 mas (5–40 AU at AB Aur's distance), the PFN is able to explore angular scales that are intermediate between those accessed by coronagraphic imaging and long baseline interferometry. This intermediate region is of special interest given that many young stellar objects are believed to harbor extended halos at such angular scales. Using destructive interference (nulling) between two sub-apertures of the Palomar 200 inch telescope and rotating the telescope pupil, we measured a resolved circumstellar excess at all probed azimuth angles. The astrophysical null measured over the full rotation is fairly constant, with a mean value of 1.52%, and a slight additional azimuthal modulation of ±0.2%. The isotropic astrophysical null is indicative of circumstellar emission dominated by an azimuthally extended source, possibly a halo, or one or more rings of dust, accounting for several percent of the total Ks-band flux. The modest azimuthal variation may be explained by some skewness or anisotropy of the spatially extended source, e.g., an elliptical or spiral geometry, or clumping, but it could also be due to the presence of a point source located at a separation of ~120 mas (17 AU) with ~6 × 10^−3 of the stellar flux. We combine our results with previous Infrared Optical Telescope Array observations of AB Aur at H band, and demonstrate that a dust ring located at ~30 mas (4.3 AU) represents the best-fitting model to explain both sets of visibilities. We are also able to test a few previously hypothesized models of the incoherent component evident at longer interferometric baselines

    The structure of the hydrodynamic plasma flow near the heliopause stagnation point

    Get PDF
    The plasma flow in the vicinity of the heliopause stagnation point in the presence of the H atom flow is studied. The plasma at both sides of the heliopause is considered to be a single fluid. The back reaction of the plasma flow on the H atom flow is neglected, and the density, temperature and velocity of the H atom flow are taken to be constant. The solution describing the plasma flow is obtained in the form of power series expansions with respect to the radial distance from the symmetry axis. The main conclusion made on the basis of the obtained solution is that the heliopause is not the surface of discontinuity anymore. Rather, it is the surface separating the flows of the solar wind and interstellar medium with all plasma parameters continuous at this surface
    • …
    corecore