5,376 research outputs found

    Concatenated Space Time Block Codes and TCM, Turbo TCM Convolutional as well as Turbo Codes

    No full text
    Space-time block codes provide substantial diversity advantages for multiple transmit antenna systems at a low decoding complexity. In this paper, we concatenate space-time codes with Convolutional Codes (CC), Turbo Convolutional codes (TC), Turbo BCH codes (TBCH), Trellis Coded Modulation (TCM) and Turbo Trellis Coded Modulation (TTCM) schemes for achieving a high coding gain. The associated performance and complexity of the coding schemes is compared

    Stochastic polarization formation in exciton-polariton Bose-Einstein condensates

    Full text link
    We demonstrate theoretically the spontaneous formation of a stochastic polarization in exciton-polariton Bose-Einstein condensates in planar microcavities under pulsed excitation. Below the threshold pumping intensity (dependent on the polariton life-time) the average polarization degree is close to zero, whilst above threshold the condensate acquires a polarization described by a (pseudospin) vector with random orientation, in general. We establish the link between second order coherence of the polariton condensate and the distribution function of its polarization. We examine also the mechanisms of polarization dephasing and relaxation.Comment: 4 pages, 3 figure

    Monolithic Arrays of Grating-Surface-Emitting Diode Lasers and Quantum Well Modulators for Optical Communications

    Get PDF
    The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator

    Ballistic spin transport in exciton gases

    Full text link
    Traditional spintronics relies on spin transport by charge carriers, such as electrons in semiconductor crystals. This brings several complications: the Pauli principle prevents the carriers from moving with the same speed; Coulomb repulsion leads to rapid dephasing of electron flows. Spin-optronics is a valuable alternative to traditional spintronics. In spin-optronic devices the spin currents are carried by electrically neutral bosonic quasi-particles: excitons or exciton-polaritons. They can form highly coherent quantum liquids and carry spins over macroscopic distances. The price to pay is a finite life-time of the bosonic spin carriers. We present the theory of exciton ballistic spin transport which may be applied to a range of systems where bosonic spin transport has been reported, in particular, to indirect excitons in coupled GaAs/AlGaAs quantum wells. We describe the effect of spin-orbit interaction of electrons and holes on the exciton spin, account for the Zeeman effect induced by external magnetic fields, long range and short range exchange splittings of the exciton resonances. We also consider exciton transport in the non-linear regime and discuss the definitions of exciton spin current, polarization current and spin conductivity.Comment: 16 pages, 10 figures to be published in Phys. Rev.

    PCV94 Dronedarone is Cost-Effective for the Prevention of Downstream Cardiovascular Morbidity and Mortality in Australian Patients with Atrial Fibrillation

    Get PDF

    Electrically pumped semiconductor laser with low spatial coherence and directional emission

    Full text link
    We design and fabricate an on-chip laser source that produces a directional beam with low spatial coherence. The lasing modes are based on the axial orbit in a stable cavity and have good directionality. To reduce the spatial coherence of emission, the number of transverse lasing modes is maximized by fine-tuning the cavity geometry. Decoherence is reached in a few nanoseconds. Such rapid decoherence will facilitate applications in ultrafast speckle-free full-field imaging

    Cardiovascular risk scores do not account for the effect of treatment: a review

    Get PDF
    OBJECTIVE: To compare the strengths and limitations of cardiovascular risk scores available for clinicians in assessing the global (absolute) risk of cardiovascular disease. DESIGN: Review of cardiovascular risk scores. DATA SOURCES: Medline (1966 to May 2009) using a mixture of MeSH terms and free text for the keywords 'cardiovascular', 'risk prediction' and 'cohort studies'. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: A study was eligible if it fulfilled the following criteria: (1) it was a cohort study of adults in the general population with no prior history of cardiovascular disease and not restricted by a disease condition; (2) the primary objective was the development of a cardiovascular risk score/equation that predicted an individual's absolute cardiovascular risk in 5-10 years; (3) the score could be used by a clinician to calculate the risk for an individual patient. RESULTS: 21 risk scores from 18 papers were identified from 3536 papers. Cohort size ranged from 4372 participants (SHS) to 1591209 records (QRISK2). More than half of the cardiovascular risk scores (11) were from studies with recruitment starting after 1980. Definitions and methods for measuring risk predictors and outcomes varied widely between scores. Fourteen cardiovascular risk scores reported data on prior treatment, but this was mainly limited to antihypertensive treatment. Only two studies reported prior use of lipid-lowering agents. None reported on prior use of platelet inhibitors or data on treatment drop-ins. CONCLUSIONS: The use of risk-factor-modifying drugs-for example, statins-and disease-modifying medication-for example, platelet inhibitors-was not accounted for. In addition, none of the risk scores addressed the effect of treatment drop-ins-that is, treatment started during the study period. Ideally, a risk score should be derived from a population free from treatment. The lack of accounting for treatment effect and the wide variation in study characteristics, predictors and outcomes causes difficulties in the use of cardiovascular risk scores for clinical treatment decision

    Origins of ferromagnetism in transition-metal doped Si

    Get PDF
    We present results of the magnetic, structural and chemical characterizations of Mn<sup>+</sup>-implanted Si displaying <i>n</i>-type semiconducting behavior and ferromagnetic ordering with Curie temperature,T<sub>C</sub> well above room temperature. The temperature-dependent magnetization measured by superconducting quantum device interference (SQUID) from 5 K to 800 K was characterized by three different critical temperatures (T*<sub>C</sub>~45 K, T<sub>C1</sub>~630-650 K and T<sub>C2</sub>~805-825 K). Their origins were investigated using dynamic secondary mass ion spectroscopy (SIMS) and transmission electron microscopy (TEM) techniques, including electron energy loss spectroscopy (EELS), Z-contrast STEM (scanning TEM) imaging and electron diffraction. We provided direct evidences of the presence of a small amount of Fe and Cr impurities which were unintentionally doped into the samples together with the Mn<sup>+</sup> ions, as well as the formation of Mn-rich precipitates embedded in a Mn-poor matrix. The observed T*<sub>C</sub> is attributed to the Mn<sub>4</sub>Si<sub>7</sub> precipitates identified by electron diffraction. Possible origins of and are also discussed. Our findings raise questions regarding the origin of the high ferromagnetism reported in many material systems without a careful chemical analysis

    PCV115 ASSESSING THE POTENTIAL BENEFITS OF CHANGING REIMBURSEMENT CRITERIA FOR LIPID LOWERINGTHERAPY IN KOREA

    Get PDF
    corecore