4 research outputs found

    Cardiac ryanodine receptor calcium release deficiency syndrome

    No full text
    Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia, a condition characterized by prominent ventricular ectopy in response to catecholamine stress, which can be reproduced on exercise stress testing (EST). However, reports of sudden cardiac death (SCD) have emerged in EST-negative individuals who have loss-of-function (LOF) RyR2 mutations. The clinical relevance of RyR2 LOF mutations including their pathogenic mechanism, diagnosis, and treatment are all unknowns. Here, we performed clinical and genetic evaluations of individuals who suffered from SCD and harbored an LOF RyR2 mutation. We carried out electrophysiological studies using a programed electrical stimulation protocol consisting of a long-burst, long-pause, and short-coupled (LBLPS) ventricular extra-stimulus. Linkage analysis of RyR2 LOF mutations in six families revealed a combined logarithm of the odds ratio for linkage score of 11.479 for a condition associated with SCD with negative EST. A RyR2 LOF mouse model exhibited no catecholamine-provoked ventricular arrhythmias as in humans but did have substantial cardiac electrophysiological remodeling and an increased propensity for early afterdepolarizations. The LBLPS pacing protocol reliably induced ventricular arrhythmias in mice and humans having RyR2 LOF mutations, whose phenotype is otherwise concealed before SCD. Furthermore, treatment with quinidine and flecainide abolished LBLPS-induced ventricular arrhythmias in model mice. Thus, RyR2 LOF mutations underlie a previously unknown disease entity characterized by SCD with normal EST that we have termed RyR2 Ca2+ release deficiency syndrome (CRDS). Our study provides insights into the mechanism of CRDS, reports a specific CRDS diagnostic test, and identifies potentially efficacious anti-CRDS therapies

    An International Multicenter Cohort Study on β-Blockers for the Treatment of Symptomatic Children With Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    Background: Symptomatic children with catecholaminergic polymorphic ventricular tachycardia (CPVT) are at risk for recurrent arrhythmic events. β-Blockers decrease this risk, but studies comparing individual β-blockers in sizeable cohorts are lacking. We aimed to assess the association between risk for arrhythmic events and type of β-blocker in a large cohort of symptomatic children with CPVT. Methods: From 2 international registries of patients with CPVT, RYR2 variant–carrying symptomatic children (defined as syncope or sudden cardiac arrest before β-blocker initiation and age at start of β-blocker therapy <18 years), treated with a β-blocker were included. Cox regression analyses with time-dependent covariates for β-blockers and potential confounders were used to assess the hazard ratio (HR). The primary outcome was the first occurrence of sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter-defibrillator shock, or syncope. The secondary outcome was the first occurrence of any of the primary outcomes except syncope. Results: We included 329 patients (median age at diagnosis, 12 [interquartile range, 7–15] years, 35% females). Ninety-nine (30.1%) patients experienced the primary outcome and 74 (22.5%) experienced the secondary outcome during a median follow-up of 6.7 (interquartile range, 2.8–12.5) years. Two-hundred sixteen patients (66.0%) used a nonselective β-blocker (predominantly nadolol [n=140] or propranolol [n=70]) and 111 (33.7%) used a β1-selective β-blocker (predominantly atenolol [n=51], metoprolol [n=33], or bisoprolol [n=19]) as initial β-blocker. Baseline characteristics did not differ. The HRs for both the primary and secondary outcomes were higher for β1-selective compared with nonselective β-blockers (HR, 2.04 [95% CI, 1.31–3.17]; and HR, 1.99 [95% CI, 1.20–3.30], respectively). When assessed separately, the HR for the primary outcome was higher for atenolol (HR, 2.68 [95% CI, 1.44–4.99]), bisoprolol (HR, 3.24 [95% CI, 1.47–7.18]), and metoprolol (HR, 2.18 [95% CI, 1.08–4.40]) compared with nadolol, but did not differ from propranolol. The HR of the secondary outcome was only higher in atenolol compared with nadolol (HR, 2.68 [95% CI, 1.30–5.55]). Conclusions: β1-selective β-blockers were associated with a significantly higher risk for arrhythmic events in symptomatic children with CPVT compared with nonselective β-blockers, specifically nadolol. Nadolol, or propranolol if nadolol is unavailable, should be the preferred β-blocker for treating symptomatic children with CPVT
    corecore