58 research outputs found

    Modulation of colony stimulating factor release and apoptosis in human colon cancer cells by anticancer drugs

    Get PDF
    Modulation of the immune response against tumour cells is emerging as a valuable approach for cancer treatment. Some experimental studies have shown that secretion of colony stimulating factors by cancer cells reduces their tumorigenicity and increases their immunogenicity probably by promoting the cytolitic and antigen presenting activities of leukocytes. We have observed that human colon cancer cells (HT-29) are able to secrete granulocyte-macrophage-colony stimulating factor, granulocyte-colony stimulating factor and macrophage-colony stimulating factor when stimulated with cytokines (IL-1β and TNF-α). In this study we assessed, for the first time, the effects of several anticancer drugs on colony stimulating factor release or apoptosis in HT-29 cells. Cytokine-induced release of granulocyte-macrophage-colony stimulating factor, granulocyte-colony stimulating factor and macrophage-colony stimulating factor was significantly increased by cisplatin and 6-mercaptopurine. Taxol only increased macrophage-colony stimulating factor release while reduced that of granulocyte-colony stimulating factor. No changes in colony stimulating factor secretion were observed after treatment with methotrexate. Only cisplatin and taxol induced apoptosis in these cells. Secretion of colony stimulating factors by colon cancer cells may contribute to the immune host response against them. Anticancer drugs such as cisplatin and 6-mercaptopurine increase colony stimulating factor secretion by cytokine stimulated cancer cells probably through mechanisms different to those leading to cell apoptosis, an effect that may contribute to their anti-neoplasic action

    Timed sequential chemotherapy with concomitant Granulocyte Colony-Stimulating Factor for high-risk acute myelogenous leukemia: a single arm clinical trial

    Get PDF
    BACKGROUND: The timed-sequential chemotherapy regimen consisting of etoposide, mitoxantrone and cytarabine (EMA) is an effective therapy for relapsed or refractory acute myelogenous leukemia (AML). We postulated that granulocyte colony-stimulating factor (G-CSF) might enhance the cytotoxicity of EMA by increasing the proportion of leukemic blasts in S-phase. We added G-CSF to EMA (EMA-G) for therapy of advanced high-risk AML patients. METHODS: High-risk AML was defined as refractory, relapsed or secondary to either an antecedent hematologic disorder or exposure to cytotoxic agents. The patients were treated with one course of EMA-G consisting of mitoxantrone and cytarabine on days 1–3, and etoposide and cytarabine on days 8–10. G-CSF was started on day 4 and continued until absolute neutrophil count recovered. RESULTS: Thirty patients were enrolled. The median age was 51 years (range, 25–75). Seventeen (61%) patients had unfavorable cytogenetic karyotypes. Twenty (69%) patients had secondary AML. Ten (34%) had relapsed disease. Four (14%) had refractory AML. Three (10%) patients died from febrile neutropenia and sepsis. Major non-hematologic toxicity included hyperbilirubimenia, renal insufficiency, mucositis, diarrhea, nausea and vomiting, skin rash. A complete remission was achieved in 13 (46%) patients. Median overall survival was 9 months (range, 0.5–66). Median relapse-free survival (RFS) for those who had a CR was 3 months (range, 0.5–63) with RFS censored at the time of allogeneic bone marrow transplantation or peripheral stem cell transplantation for 6 of the patients. CONCLUSIONS: EMA-G is a safe and efficacious option for induction chemotherapy in advanced, high-risk AML patients. The activity of EMA may be increased if applied in patients with less advanced disease

    Diagnosis and treatment of viral diseases in recipients of allogeneic hematopoietic stem cell transplantation

    Full text link
    • …
    corecore