60 research outputs found

    Scaling Qubit Readout with Hardware Efficient Machine Learning Architectures

    Full text link
    Reading a qubit is a fundamental operation in quantum computing. It translates quantum information into classical information enabling subsequent classification to assign the qubit states `0' or `1'. Unfortunately, qubit readout is one of the most error-prone and slowest operations on a superconducting quantum processor. On state-of-the-art superconducting quantum processors, readout errors can range from 1-10%. High readout accuracy is essential for enabling high fidelity for near-term noisy quantum computers and error-corrected quantum computers of the future. Prior works have used machine-learning-assisted single-shot qubit-state classification, where a deep neural network was used for more robust discrimination by compensating for crosstalk errors. However, the neural network size can limit the scalability of systems, especially if fast hardware discrimination is required. This state-of-the-art baseline design cannot be implemented on off-the-shelf FPGAs used for the control and readout of superconducting qubits in most systems, which increases the overall readout latency as discrimination has to be performed in software. In this work, we propose HERQULES, a scalable approach to improve qubit-state discrimination by using a hierarchy of matched filters in conjunction with a significantly smaller and scalable neural network for qubit-state discrimination. We achieve substantially higher readout accuracies (16.4% relative improvement) than the baseline with a scalable design that can be readily implemented on off-the-shelf FPGAs. We also show that HERQULES is more versatile and can support shorter readout durations than the baseline design without additional training overheads

    Microwave Packaging for Superconducting Qubits

    Full text link
    Over the past two decades, the performance of superconducting quantum circuits has tremendously improved. The progress of superconducting qubits enabled a new industry branch to emerge from global technology enterprises to quantum computing startups. Here, an overview of superconducting quantum circuit microwave control is presented. Furthermore, we discuss one of the persistent engineering challenges in the field, how to control the electromagnetic environment of increasingly complex superconducting circuits such that they are simultaneously protected and efficiently controllable

    Microwave Package Design for Superconducting Quantum Processors

    Full text link
    Solid-state qubits with transition frequencies in the microwave regime, such as superconducting qubits, are at the forefront of quantum information processing. However, high-fidelity, simultaneous control of superconducting qubits at even a moderate scale remains a challenge, partly due to the complexities of packaging these devices. Here, we present an approach to microwave package design focusing on material choices, signal line engineering, and spurious mode suppression. We describe design guidelines validated using simulations and measurements used to develop a 24-port microwave package. Analyzing the qubit environment reveals no spurious modes up to 11GHz. The material and geometric design choices enable the package to support qubits with lifetimes exceeding 350 {\mu}s. The microwave package design guidelines presented here address many issues relevant for near-term quantum processors.Comment: 15 pages, 9 figure

    Lead-related quantum emitters in diamond

    Get PDF
    We report on quantum emission from Pb-related color centers in diamond following ion implantation and high-temperature vacuum annealing. First-principles calculations predict a negatively charged Pb-vacancy (PbV) center in a split-vacancy configuration, with a zero-phonon transition around 2.4 eV. Cryogenic photoluminescence measurements performed on emitters in nanofabricated pillars reveal several transitions, including a prominent doublet near 520 nm. The splitting of this doublet, 5.7 THz, exceeds that reported for other group-IV centers. These observations are consistent with the PbV center, which is expected to have a combination of narrow optical transitions and stable spin states, making it a promising system for quantum network nodes.U.S. Army Research Laboratory. Center for Distributed Quantum InformationNational Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Science Foundation (U.S.) (Grant DMR-1231319)United States. National Aeronautics and Space Administration (Space Technology Research Fellowship)MIT-Harvard Center for Ultracold Atoms MIT International Science and Technology Initiativ

    Transform-limited photons from a coherent tin-vacancy spin in diamond

    Get PDF
    Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phononlimited with an exponential temperature scaling leading to T1T_1 >> 10 ms, and the coherence time, T2T_2 reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications

    Deep Neural Network Discrimination of Multiplexed Superconducting Qubit States

    Full text link
    Demonstrating a quantum computational advantage will require high-fidelity control and readout of multi-qubit systems. As system size increases, multiplexed qubit readout becomes a practical necessity to limit the growth of resource overhead. Many contemporary qubit-state discriminators presume single-qubit operating conditions or require considerable computational effort, limiting their potential extensibility. Here, we present multi-qubit readout using neural networks as state discriminators. We compare our approach to contemporary methods employed on a quantum device with five superconducting qubits and frequency-multiplexed readout. We find that fully-connected feedforward neural networks increase the qubit-state-assignment fidelity for our system. Relative to contemporary discriminators, the assignment error rate is reduced by up to 25% due to the compensation of system-dependent nonidealities such as readout crosstalk which is reduced by up to one order of magnitude. Our work demonstrates a potentially extensible building block for high-fidelity readout relevant to both near-term devices and future fault-tolerant systems.Comment: 18 Pages, 9 figure

    Broadband Squeezed Microwaves and Amplification with a Josephson Traveling-Wave Parametric Amplifier

    Full text link
    Squeezing of the electromagnetic vacuum is an essential metrological technique used to reduce quantum noise in applications spanning gravitational wave detection, biological microscopy, and quantum information science. In superconducting circuits, the resonator-based Josephson-junction parametric amplifiers conventionally used to generate squeezed microwaves are constrained by a narrow bandwidth and low dynamic range. In this work, we develop a dual-pump, broadband Josephson traveling-wave parametric amplifier that combines a phase-sensitive extinction ratio of 56 dB with single-mode squeezing on par with the best resonator-based squeezers. We also demonstrate two-mode squeezing at microwave frequencies with bandwidth in the gigahertz range that is almost two orders of magnitude wider than that of contemporary resonator-based squeezers. Our amplifier is capable of simultaneously creating entangled microwave photon pairs with large frequency separation, with potential applications including high-fidelity qubit readout, quantum illumination and teleportation

    Discovery of charge order and corresponding edge state in kagome magnet FeGe

    Full text link
    Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge order, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to non-kagome surface layers. Here we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifes a 2x2 charge order in the magnetic kagome lattice, resembling that discovered in kagome superconductors. Spin-mapping across steps of unit-cell-height demonstrates that this charge order emerges from spin-polarized electrons with an antiferromagnetic stacking order. We further uncover the correlation between antiferromagnetism and charge order anisotropy, highlighting the unusual magnetic coupling of the charge order. Finally, we detect a pronounced edge state within the charge order energy gap, which is robust against the irregular shape of the kagome lattice edges. We discuss our results with the theoretically considered topological features of the kagome charge order including orbital magnetism and bulk-boundary correspondence
    • …
    corecore