20 research outputs found
Strategy and rationale for urine collection protocols employed in the NEPTUNE study
Abstract
Background
Glomerular diseases are potentially fatal, requiring aggressive interventions and close monitoring. Urine is a readily-accessible body fluid enriched in molecular signatures from the kidney and therefore particularly suited for routine clinical analysis as well as development of non-invasive biomarkers for glomerular diseases.
Methods
The Nephrotic Syndrome Study Network (NEPTUNE; ClinicalTrials.gov Identifier NCT01209000) is a North American multicenter collaborative consortium established to develop a translational research infrastructure for nephrotic syndrome. This includes standardized urine collections across all participating centers for the purpose of discovering non-invasive biomarkers for patients with nephrotic syndrome due to minimal change disease, focal segmental glomerulosclerosis, and membranous nephropathy. Here we describe the organization and methods of urine procurement and banking procedures in NEPTUNE.
Results
We discuss the rationale for urine collection and storage conditions, and demonstrate the performance of three experimental analytes (neutrophil gelatinase-associated lipocalin [NGAL], retinol binding globulin, and alpha-1 microglobulin) under these conditions with and without urine preservatives (thymol, toluene, and boric acid). We also demonstrate the quality of RNA and protein collected from the urine cellular pellet and exosomes.
Conclusions
The urine collection protocol in NEPTUNE allows robust detection of a wide range of proteins and RNAs from urine supernatant and pellets collected longitudinally from each patient over 5 years. Combined with the detailed clinical and histopathologic data, this provides a unique resource for exploration and validation of new or accepted markers of glomerular diseases.
Trial registration
ClinicalTrials.gov Identifier
NCT01209000http://deepblue.lib.umich.edu/bitstream/2027.42/116023/1/12882_2015_Article_185.pd
Rationale and Design of the Nephrotic Syndrome Study Network (NEPTUNE) Match in Glomerular Diseases: Designing the Right Trial for the Right Patient, Today
Glomerular diseases are classified using a descriptive taxonomy that is not reflective of the heterogeneous underlying molecular drivers. This limits not only diagnostic and therapeutic patient management, but also impacts clinical trials evaluating targeted interventions. The Nephrotic Syndrome Study Network (NEPTUNE) is poised to address these challenges. The study has enrolled \u3e850 pediatric and adult patients with proteinuric glomerular diseases who have contributed to deep clinical, histologic, genetic, and molecular profiles linked to long-term outcomes. The NEPTUNE Knowledge Network, comprising combined, multiscalar data sets, captures each participant\u27s molecular disease processes at the time of kidney biopsy. In this editorial, we describe the design and implementation of NEPTUNE Match, which bridges a basic science discovery pipeline with targeted clinical trials. Noninvasive biomarkers have been developed for real-time pathway analyses. A Molecular Nephrology Board reviews the pathway maps together with clinical, laboratory, and histopathologic data assembled for each patient to compile a Match report that estimates the fit between the specific molecular disease pathway(s) identified in an individual patient and proposed clinical trials. The NEPTUNE Match report is communicated using established protocols to the patient and the attending nephrologist for use in their selection of available clinical trials. NEPTUNE Match represents the first application of precision medicine in nephrology with the aim of developing targeted therapies and providing the right medication for each patient with primary glomerular disease
Prognostic imaging biomarkers for diabetic kidney disease (iBEAt):study protocol
Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. Trial registration: Clinicaltrials.gov (NCT03716401)
Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach
The Nephrotic Syndrome Study Network (NEPTUNE) is a North American multi-center collaborative consortium established to develop a translational research infrastructure for Nephrotic Syndrome. This includes a longitudinal observational cohort study, a pilot and ancillary studies program, a training program, and a patient contact registry. NEPTUNE will enroll 450 adults and children with minimal change disease, focal segmental glomerulosclerosis and membranous nephropathy for detailed clinical, histopathologic, and molecular phenotyping at the time of clinically-indicated renal biopsy. Initial visits will include an extensive clinical history, physical examination, collection of urine, blood and renal tissue samples, and assessments of quality of life and patient-reported outcomes. Follow-up history, physical measures, urine and blood samples, and questionnaires will be obtained every 4 months in the first year and bi-annually, thereafter. Molecular profiles and gene expression data will be linked to phenotypic, genetic, and digitalized histologic data for comprehensive analyses using systems biology approaches. Analytical strategies were designed to transform descriptive information to mechanistic disease classification for Nephrotic Syndrome and to identify clinical, histological, and genomic disease predictors. Thus, understanding the complexity of the disease pathogenesis will guide further investigation for targeted therapeutic strategies
Urine Podocyte mRNAs Mark Progression of Renal Disease
Because loss of podocytes associates with glomerulosclerosis, monitoring podocyte loss by measuring podocyte products in urine may be clinically useful. To determine whether a single episode of podocyte injury would cause persistent podocyte loss, we induced limited podocyte depletion using a diphtheria toxin receptor (hDTR) transgenic rat. We monitored podocyte loss by detecting nephrin and podocin mRNA in urine particulates with quantitative reverse transcriptase–PCR. Aquaporin 2 mRNA served as a kidney reference gene to account for variable kidney contribution to RNA amount and quality. We found that a single injection of diphtheria toxin resulted in an initial peak of proteinuria and podocyte mRNAs (podocin and nephrin) followed 8 d later by a second peak of proteinuria and podocyte mRNAs that were podocin positive but nephrin negative. Proteinuria that persisted for months correlated with podocin-positive, nephrin-negative mRNAs in urine. Animals with persistent podocyte mRNA in urine progressed to ESRD with global podocyte depletion and interstitial scarring. Podocytes in ectatic tubules expressed podocalyxin and podocin proteins but not nephrin, compatible with detached podocytes’ having an altered phenotype. Parallel human studies showed that biopsy-proven glomerular injury associated with increased urinary podocin:aquaporin 2 and nephrin:aquaporin 2 molar ratios. We conclude that a single episode of podocyte injury can trigger glomerular destabilization, resulting in persistent podocyte loss and an altered phenotype of podocytes recovered from urine. Podocyte mRNAs in urine may be a useful clinical tool for the diagnosis and monitoring of glomerular diseases
Recommended from our members
SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease
COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2–infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19–related kidney damage
Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol
Abstract
Background
Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim).
Methods
iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes.
Discussion
iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D.
Trial registration
Clinicaltrials.gov
(
NCT03716401
).http://deepblue.lib.umich.edu/bitstream/2027.42/173568/1/12882_2020_Article_1901.pd
Additional file 1 of Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol
Additional file 1: 1.1 MRI biomarkers. File type: PDF file. Title: List of primary MRI biomarkers. Description: A table listing the biomarkers that will be derived from the MRI data to address the primary objectives. 1.2 MRI acquisition protocol. PDF file. MRI acquisition protocol (reference scanner). MRI sequence parameters for the iBEAt protocol on the reference scanner (Siemens 3 T). 1.3 Renal ultrasound SOP. PDF file. Ultrasound Standard Operating Procedures. Standard operating procedures for Ultrasound scanning in iBEAt
Additional file 2 of Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol
Additional file 2: 2.1 Biofluid collection SOPs. PDF file. Biofluid collection protocol. The protocol for the collection of blood and urine samples within iBEAt. 2.2 SOPs Biofluid processing. PDF file. Biofluid processing protocol. The protocol for processing blood and urine samples within iBEAt. 2.3 Biofluid schematics. PDF file. iBEAt kit contents and biofluid processing schematics. Schematics of iBEAt collection kits, and processing and storage protocols for collected blood and urine samples within iBEAt