3 research outputs found

    Acceptance and user experiences of a wearable device for the management of hospitalized patients in COVID-19–designated wards in Ho Chi Minh City, Vietnam: action learning project

    Get PDF
    Background: Wearable devices have been used extensively both inside and outside of the hospital setting. During the COVID-19 pandemic, in some contexts, there was an increased need to remotely monitor pulse and saturated oxygen for patients due to the lack of staff and bedside monitors. Objective: A prototype of a remote monitoring system using wearable pulse oximeter devices was implemented at the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam, from August to December 2021. The aim of this work was to support the ongoing implementation of the remote monitoring system. Methods: We used an action learning approach with rapid pragmatic methods, including informal discussions and observations as well as a feedback survey form designed based on the technology acceptance model to assess the use and acceptability of the system. Based on these results, we facilitated a meeting using user-centered design principles to explore user needs and ideas about its development in more detail. Results: In total, 21 users filled in the feedback form. The mean technology acceptance model scores ranged from 3.5 (for perceived ease of use) to 4.4 (for attitude) with behavioral intention (3.8) and perceived usefulness (4.2) scoring in between. Those working as nurses scored higher on perceived usefulness, attitude, and behavioral intention than did physicians. Based on informal discussions, we realized there was a mismatch between how we (ie, the research team) and the ward teams perceived the use and wider purpose of the technology. Conclusions: Designing and implementing the devices to be more nurse-centric from their introduction could have helped to increase their efficiency and use during the complex pandemic period

    Prevalence and Associated Factors of <i>optrA</i>-Positive-<i>Enterococcus faecalis</i> in Different Reservoirs around Farms in Vietnam

    No full text
    Linezolid is an antibiotic of last resort for the treatment of infections caused by Gram-positive bacteria, including vancomycin-resistant enterococci. Enterococcus faecalis, a member of enterococci, is a significant pathogen in nosocomial infections. E. faecalis resistance to linezolid is frequently related to the presence of optrA, which is often co-carried with fex, phenicol exporter genes, and erm genes encoding macrolide resistance. Therefore, the common use of antibiotics in veterinary might promote the occurrence of optrA in livestock settings. This is a cross-sectional study aiming to investigate the prevalence of optrA positive E. faecalis (OPEfs) in 6 reservoirs in farms in Ha Nam province, Vietnam, and its associated factors and to explore genetic relationships of OPEfs isolates. Among 639 collected samples, the prevalence of OPEfs was highest in flies, 46.8% (51/109), followed by chickens 37.3% (72/193), dogs 33.3% (17/51), humans 18.7% (26/139), wastewater 16.4% (11/67) and pigs 11.3%, (14/80). The total feeding area and total livestock unit of the farm were associated with the presence of OPEfs in chickens, flies, and wastewater. Among 186 OPEfs strains, 86% were resistant to linezolid. The presence of optrA was also related to the resistant phenotype against linezolid and levofloxacin of E. faecalis isolates. Close genotypic relationships identified by Pulsed Field Gel Electrophoresis between OPEfs isolates recovered from flies and other reservoirs including chickens, pigs, dogs, and wastewater suggested the role of flies in the transmission of antibiotic-resistant pathogens. These results provided warnings of linezolid resistance although it is not used in livestock

    Acceptance and User Experiences of a Wearable Device for the Management of Hospitalized Patients in COVID-19–Designated Wards in Ho Chi Minh City, Vietnam: Action Learning Project

    Get PDF
    BackgroundWearable devices have been used extensively both inside and outside of the hospital setting. During the COVID-19 pandemic, in some contexts, there was an increased need to remotely monitor pulse and saturated oxygen for patients due to the lack of staff and bedside monitors. ObjectiveA prototype of a remote monitoring system using wearable pulse oximeter devices was implemented at the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam, from August to December 2021. The aim of this work was to support the ongoing implementation of the remote monitoring system. MethodsWe used an action learning approach with rapid pragmatic methods, including informal discussions and observations as well as a feedback survey form designed based on the technology acceptance model to assess the use and acceptability of the system. Based on these results, we facilitated a meeting using user-centered design principles to explore user needs and ideas about its development in more detail. ResultsIn total, 21 users filled in the feedback form. The mean technology acceptance model scores ranged from 3.5 (for perceived ease of use) to 4.4 (for attitude) with behavioral intention (3.8) and perceived usefulness (4.2) scoring in between. Those working as nurses scored higher on perceived usefulness, attitude, and behavioral intention than did physicians. Based on informal discussions, we realized there was a mismatch between how we (ie, the research team) and the ward teams perceived the use and wider purpose of the technology. ConclusionsDesigning and implementing the devices to be more nurse-centric from their introduction could have helped to increase their efficiency and use during the complex pandemic period
    corecore