4,345 research outputs found

    Observing Coherence Effects in an Overdamped Quantum System

    Get PDF
    It is usually considered that the spectrum of an optical cavity coupled to an atomic medium does not exhibit a normal-mode splitting unless the system satisfies the strong coupling condition, meaning the Rabi frequency of the coherent coupling exceeds the decay rates of atom and cavity excitations. Here we show that this need not be the case, but depends on the way in which the coupled system is probed. Measurements of the reflection of a probe laser from the input mirror of an overdamped cavity reveal an avoided crossing in the spectrum which is not observed when driving the atoms directly and measuring the Purcell-enhanced cavity emission. We understand these observations by noting a formal correspondence with electromagnetically-induced transparency of a three-level atom in free space, where our cavity acts as the absorbing medium and the coupled atoms play the role of the control field

    Short gamma-ray bursts within 200 Mpc

    Get PDF
    We present a systematic search for short-duration gamma-ray bursts (GRBs) in the local Universe based on 14 yr of observations with the Neil Gehrels Swift Observatory. We cross-correlate the GRB positions with the GLADE catalogue of nearby galaxies, and find no event at a distance ≲100 Mpc and four plausible candidates in the range 100 Mpc ≲ D ≲ 200 Mpc. Although affected by low statistics, this number is higher than the one expected for chance alignments to random galaxies, and possibly suggests a physical association between these bursts and nearby galaxies. By assuming a local origin, we use these events to constrain the range of properties for X-ray counterparts of neutron star mergers. Optical upper limits place tight constraints on the onset of a blue kilonova, and imply either low masses (⁠≲10−3M⊙⁠) of lanthanide-poor ejecta or unfavorable orientations (θ_(obs) ≳ 30 deg). Finally, we derive that the all-sky rate of detectable short GRBs within 200 Mpc is 1.3^(+1.7)_(−0.8) yr⁻¹ (68 per cent confidence interval), and discuss the implications for the GRB outflow structure. If these candidates are instead of cosmological origin, we set a upper limit of ≲2.0 yr⁻¹ (90 per cent confidence interval) to the rate of nearby events detectable with operating gamma-ray observatories, such as Swift and Fermi

    Measurement of Lagrangian velocity in fully developed turbulence

    Full text link
    We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynolds number Rλ=740R_{\lambda} = 740. Its dynamics is analyzed with two decades of time resolution, below the Lagrangian correlation time. We observe that the Lagrangian velocity spectrum has a Lorentzian form EL(ω)=urms2TL/(1+(TLω)2)E^{L}(\omega) = u_{rms}^{2} T_{L} / (1 + (T_{L}\omega)^{2}), in agreement with a Kolmogorov-like scaling in the inertial range. The probability density function (PDF) of the velocity time increments displays a change of shape from quasi-Gaussian a integral time scale to stretched exponential tails at the smallest time increments. This intermittency, when measured from relative scaling exponents of structure functions, is more pronounced than in the Eulerian framework.Comment: 4 pages, 5 figures. to appear in PR

    Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant

    Full text link
    We here present a high sensitivity gravity-gradiometer based on atom interferometry. In our apparatus, two clouds of laser-cooled rubidium atoms are launched in fountain configuration and interrogated by a Raman interferometry sequence to probe the gradient of gravity field. We recently implemented a high-flux atomic source and a newly designed Raman lasers system in the instrument set-up. We discuss the applications towards a precise determination of the Newtonian gravitational constant G. The long-term stability of the instrument and the signal-to-noise ratio demonstrated here open interesting perspectives for pushing the measurement precision below the 100 ppm level

    The relation between column densities of interstellar OH and CH molecules

    Full text link
    We present a new, close relation between column densities of OH and CH molecules based on 16 translucent sightlines (six of them new) and confirm the theoretical oscillator strengths of the OH A--X transitions at 3078 and 3082 \AA (0.00105, 0.000648) and CH B--X transitions at 3886 and 3890 \AA, (0.00320, 0.00210), respectively. We also report no difference between observed and previously modelled abundances of the OH molecule.Comment: 4 pages, 0 figures, accepted for publication in MNRA

    Short gamma-ray bursts within 200 Mpc

    Get PDF
    We present a systematic search for short-duration gamma-ray bursts (GRBs) in the local Universe based on 14 yr of observations with the Neil Gehrels Swift Observatory. We cross-correlate the GRB positions with the GLADE catalogue of nearby galaxies, and find no event at a distance ≲100 Mpc and four plausible candidates in the range 100 Mpc ≲ D ≲ 200 Mpc. Although affected by low statistics, this number is higher than the one expected for chance alignments to random galaxies, and possibly suggests a physical association between these bursts and nearby galaxies. By assuming a local origin, we use these events to constrain the range of properties for X-ray counterparts of neutron star mergers. Optical upper limits place tight constraints on the onset of a blue kilonova, and imply either low masses (⁠≲10−3M⊙⁠) of lanthanide-poor ejecta or unfavorable orientations (θ_(obs) ≳ 30 deg). Finally, we derive that the all-sky rate of detectable short GRBs within 200 Mpc is 1.3^(+1.7)_(−0.8) yr⁻¹ (68 per cent confidence interval), and discuss the implications for the GRB outflow structure. If these candidates are instead of cosmological origin, we set a upper limit of ≲2.0 yr⁻¹ (90 per cent confidence interval) to the rate of nearby events detectable with operating gamma-ray observatories, such as Swift and Fermi

    Universal Crossover between Efros-Shklovskii and Mott Variable-Range-Hopping Regimes

    Full text link
    A universal scaling function, describing the crossover between the Mott and the Efros-Shklovskii hopping regimes, is derived, using the percolation picture of transport in strongly localized systems. This function is agrees very well with experimental data. Quantitative comparison with experiment allows for the possible determination of the role played by polarons in the transport.Comment: 7 pages + 1 figure, Revte

    PERFLUOROOCTANE SULFONATE (PFOS) AND PERFLUOROOCTANOATE (PFOA) CONTAMINATION OF WATER ENVIRONMENT IN ASIAN COUNTRIES

    Full text link
    Joint Research on Environmental Science and Technology for the Eart
    corecore