3 research outputs found

    Functional analysis of six novel ORFs on the left arm of Chromosome XII in Saccharomyces cerevisiae reveals two essential genes, one of which is under cell-cycle control

    No full text
    As part of EUROFAN (European Functional Analysis Network), we investigated 21 novel yeast open reading frames (ORFs) by growth and sporulation tests of deletion mutants. Two genes (YNL026w and YNL075w) are essential for mitotic growth and three deletion strains (ynl080c, ynl081c and ynl225c) grew with reduced rates. Two genes (YNL223w and YNL225c) were identified to be required for sporulation. In addition we also performed green fluorescent protein (GFP) tagging for localization studies. GFP labelling indicated the spindle pole body (Ynl225c-GFP) and the nucleus (Ynl075w-GFP) as the sites of action of two proteins. Ynl080c-GFP and Ynl081c-GFP fluorescence was visible in dot-shaped and elongated structures, whereas the Ynl022c-GFP signal was always found as one spot per cell, usually in the vicinity of nuclear DNA. The remaining C-terminal GFP fusions did not produce a clearly identifiable fluorescence signal. For 10 ORFs we constructed 5'-GFP fusions that were expressed from the regulatable GAL1 promoter. In all cases we observed GFP fluorescence upon induction but the localization of the fusion proteins remained difficult to determine. GFP-Ynl020c and GFP-Ynl034w strains grew only poorly on galactose, indicating a toxic effect of the overexpressed fusion proteins. In summary, we obtained a discernible GFP localization pattern in five of 20 strains investigated (25%). A deletion phenotype was observed in seven of 21 (33%) and an overexpression phenotype in two of 10 (20%) cases

    Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis.

    No full text
    The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium

    Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis.

    No full text
    The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium.Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, P.H.S.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore