318 research outputs found

    Time-Varying Fine-Structure Constant Requires Cosmological Constant

    Get PDF
    Webb et al. presented preliminary evidence for a time-varying fine-structure constant. We show Teller's formula for this variation to be ruled out within the Einstein-de Sitter universe, however, it is compatible with cosmologies which require a large cosmological constant.Comment: 3 pages, no figures, revtex, to be published in Mod. Phys. Lett.

    Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the degeneration of both upper and lower motor neurons. Despite decades of research, we still to date lack a cure or disease modifying treatment, emphasizing the need for a much-improved insight into disease mechanisms and cell type vulnerability. Altered neuronal excitability is a common phenomenon reported in ALS patients, as well as in animal models of the disease, but the cellular and circuit processes involved, as well as the causal relevance of those observations to molecular alterations and final cell death, remain poorly understood. Here, we review evidence from clinical studies, cell type-specific electrophysiology, genetic manipulations and molecular characterizations in animal models and culture experiments, which argue for a causal involvement of complex alterations of structure, function and connectivity of different neuronal subtypes within the cortical and spinal cord motor circuitries. We also summarize the current knowledge regarding the detrimental role of astrocytes and reassess the frequently proposed hypothesis of glutamate-mediated excitotoxicity with respect to changes in neuronal excitability. Together, these findings suggest multifaceted cell type-, brain area- and disease stage- specific disturbances of the excitation/inhibition balance as a cardinal aspect of ALS pathophysiology

    Extension of the LDA-1/2 method to the material class of bismuth containing III-V semiconductors

    Full text link
    The LDA-1/2 method is employed in density functional theory calculations for the electronic structure of III-V dilute bismide systems. For the representative example of Ga(SbBi) with Bi concentrations below 10%10 \%, it is shown that this method works very efficiently, especially due to its reasonably low demand on computer memory. The resulting bandstructure and wavefunctions are used to compute the interaction matrix elements that serve as input to microscopic calculations of the optical properties and intrinsic losses relevant for optoelectronic applications of dilute bismides

    Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation

    Get PDF

    Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation

    Get PDF

    Could face-centered cubic titanium in cold-rolled commercially-pure titanium only be a Ti-hydride?

    Get PDF
    A face-centered cubic (FCC) phase in electro-polished specimens for transmission electron microscopy of commercially pure titanium has sometimes been reported. Here, a combination of atom-probe tomography, scanning transmission electron microscopy and low-loss electron energy loss spectroscopy is employed to study both the crystal structural and chemical composition of this FCC phase. Our results prove that the FCC phase is actually a TiHx (x>1) hydride, and not a new allotrope of Ti, in agreement with previous reports. The formation of the hydride is discussed

    Revisiting Weyl's calculation of the gravitational pull in Bach's two-body solution

    Get PDF
    When the mass of one of the two bodies tends to zero, Weyl's definition of the gravitational force in an axially symmetric, static two-body solution can be given an invariant formulation in terms of a force four-vector. The norm of this force is calculated for Bach's two-body solution, that is known to be in one-to-one correspondence with Schwarzschild's original solution when one of the two masses l, l' is made to vanish. In the limit when, say, l' goes to zero, the norm of the force divided by l' and calculated at the position of the vanishing mass is found to coincide with the norm of the acceleration of a test body kept at rest in Schwarzschild's field. Both norms happen thus to grow without limit when the test body (respectively the vanishing mass l') is kept at rest in a position closer and closer to Schwarzschild's two-surface.Comment: 11 pages, 2 figures. Text to appear in Classical and Quantum Gravit

    The physical meaning of the "boost-rotation symmetric" solutions within the general interpretation of Einstein's theory of gravitation

    Full text link
    The answer to the question, what physical meaning should be attributed to the so-called boost-rotation symmetric exact solutions to the field equations of general relativity, is provided within the general interpretation scheme for the ``theories of relativity'', based on group theoretical arguments, and set forth by Erich Kretschmann already in the year 1917.Comment: 9 pages, 1 figure; text to appear in General Relativity and Gravitatio

    Bahadur Representation for the Nonparametric M-Estimator Under alpha-mixing Dependence

    Full text link
    Under the condition that the observations, which come from a high-dimensional population (X,Y), are strongly stationary and strongly-mixing, through using the local linear method, we investigate, in this paper, the strong Bahadur representation of the nonparametric M-estimator for the unknown function m(x)=arg minaIE(r(a,Y)|X=x), where the loss function r(a,y) is measurable. Furthermore, some related simulations are illustrated by using the cross validation method for both bivariate linear and bivariate nonlinear time series contaminated by heavy-tailed errors. The M-estimator is applied to a series of S&P 500 index futures andspot prices to compare its performance in practice with the usual squared-loss regression estimator
    corecore