644 research outputs found

    Gudrun von Tevenar (ed.): Nietzsche and Ethics

    Get PDF

    When the Great Mother Met the Harlequin: Jung and Neumann on Art, Archetypes and The Spirit Of The Times

    Get PDF
    Where Sigmund Freud famously failed to engage seriously and openly with Nietzsche’s Thus spoke Zarathustra (1980 [1883-85]), C.G. Jung developed his psychological theory on the basis of a thorough critical engagement with the text and even dedicated a five-year long seminar series to its interpretation (1934-39). But similar to Freud before him he often developed a blind eye to his own contemporary literature and art. As Jung’s writings on Joyce’s Ulysses (Jung 1932) or Picasso’s paintings make (Jung 1932a) evident he tended to reject the symbolic dimension of modernist art and literature and regarded it as a sheer product of the spirit of the times. Again, it was a psychologist of the next generation, Erich Neumann, whose adaptation of Jung’s theory made it possible to apply archetypal theory to modernist art. This article will follow the key differences between Jung’s and Neumann’s understanding of art and literature by looking at their interpretations of main examples of modernism

    Modified-release prednisone for polymyalgia rheumatica: a multicentre, randomised, active-controlled, double-blind, parallel-group study.

    Get PDF
    Objective: To assess the efficacy and safety of modified-release (MR) versus immediate-release (IR) prednisone in newly diagnosed glucocorticoid (GC)-na\uefve patients with polymyalgia rheumatica (PMR). Methods: Patients were randomised to double-blind MR prednisone (taken at approximately 22:00) or IR prednisone (taken in the morning), 15 mg/day for 4 weeks. The primary end point was complete response rate ( 6570% reduction in PMR visual analogue scale, duration of morning stiffness and C reactive protein (CRP) (or CRP < 2 7 upper limit of normal (ULN))) at week 4. Non-inferiority was decided if the lower 95% confidence limit (MR vs IR prednisone) was above -15%. 400 patients were planned but only 62 were enrolled due to difficulties in recruiting GC-na\uefve patients with PMR with CRP 652 7ULN. Results: The percentage of complete responders at week 4 was numerically greater for MR prednisone (53.8%) than for IR prednisone (40.9%). Non-inferiority of MR versus IR prednisone was not proven in the primary analysis on the per protocol population (N=48; treatment difference: 12.22%; 95% CI -15.82% to 40.25%). However, sensitivity analysis on the full analysis population showed an evident trend favouring MR prednisone (N=62; treatment difference: 15.56%; 95% CI -9.16% to 40.28%). Adverse events were generally mild and transient with no unexpected safety observations. Conclusions: The study showed a clear trend for favourable short-term efficacy of MR prednisone versus IR prednisone in early treatment of PMR. Further studies are warranted

    Automatic Identification of Crystal Structures and Interfaces via Artificial-Intelligence-based Electron Microscopy

    Full text link
    Characterizing crystal structures and interfaces down to the atomic level is an important step for designing advanced materials. Modern electron microscopy routinely achieves atomic resolution and is capable to resolve complex arrangements of atoms with picometer precision. Here, we present AI-STEM, an automatic, artificial-intelligence based method, for accurately identifying key characteristics from atomic-resolution scanning transmission electron microscopy (STEM) images of polycrystalline materials. The method is based on a Bayesian convolutional neural network (BNN) that is trained only on simulated images. AI-STEM automatically and accurately identifies crystal structure, lattice orientation, and location of interface regions in synthetic and experimental images. The model is trained on cubic and hexagonal crystal structures, yielding classifications and uncertainty estimates, while no explicit information on structural patterns at the interfaces is included during training. This work combines principles from probabilistic modeling, deep learning, and information theory, enabling automatic analysis of experimental, atomic-resolution images.Comment: Code (https://github.com/AndreasLeitherer/ai4stem) and data (https://doi.org/10.5281/zenodo.7756516) are available for public use. The manuscript contains 32 pages (10 pages main text, 15 pages for Methods & References & 5 Figures & 1 Table, as well as 7 pages Supplementary Information), including 5 main figures and 6 supplementary figure

    Cortical circuit alterations precede motor impairments in Huntington's disease mice

    Get PDF
    Huntington's disease (HD) is a devastating hereditary movement disorder, characterized by degeneration of neurons in the striatum and cortex. Studies in human patients and mouse HD models suggest that disturbances of neuronal function in the neocortex play an important role in disease onset and progression. However, the precise nature and time course of cortical alterations in HD have remained elusive. Here, we use chronic in vivo two-photon calcium imaging to longitudinally monitor the activity of identified single neurons in layer 2/3 of the primary motor cortex in awake, behaving R6/2 transgenic HD mice and wildtype littermates. R6/2 mice show age-dependent changes in cortical network function, with an increase in activity that affects a large fraction of cells and occurs rather abruptly within one week, preceeding the onset of motor defects. Furthermore, quantitative proteomics demonstrate a pronounced downregulation of synaptic proteins in the cortex, and histological analyses in R6/2 mice and human HD autopsy cases reveal a reduction in perisomatic inhibitory synaptic contacts on layer 2/3 pyramidal cells. Taken together, our study provides a time-resolved description of cortical network dysfunction in behaving HD mice and points to disturbed excitation/inhibition balance as an important pathomechanism in HD

    Microstructure, grain boundary evolution and anisotropic Fe segregation in (0001) textured Ti thin films

    Get PDF
    The structure and chemistry of grain boundaries (GBs) are crucial in determining polycrystalline materials' properties. Faceting and solute segregation to minimize the GB energy is a commonly observed phenomenon. In this paper, a deposition process to obtain pure tilt GBs in titanium (Ti) thin films is presented. By increasing the power density, a transition from polycrystalline film growth to a maze bicrystalline Ti film on SrTiO3 (001) substrate is triggered. All the GBs in the bicrystalline thin film are characterized to be Sigma 13 [00 01] coincident site lattice (CSL) boundaries. The GB planes are seen to distinctly facet into symmetric {(7) over bar 520} and {13 (4) over bar0} and asymmetric {10 (1) over bar0} // {11 (2) over bar0} segments of 20-50 nm length. Additionally, EDS reveals preferential segregation of iron (Fe) in every symmetric {(7) over bar 520} segment. Both the faceting and the segregation are explained by a difference in the CSL density between the facet planes. Furthermore, in the GB plane containing Fe segregation, atom probe tomography is used to experimentally determine the GB excess solute to be 1.25 atoms/nm(2). In summary, the study reveals for the first time a methodology to obtain bicrystalline Ti thin films with strong faceting and an anisotropy in Fe segregation behaviour within the neighbouring GB facets. (C) 2022 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc

    Discharge data from 50 selected rivers for GCM validation

    No full text
    • …
    corecore