1,922 research outputs found
Scanning tunneling spectroscopy of a dilute two-dimensional electron system exhibiting Rashba spin splitting
Using scanning tunneling spectroscopy (STS) at 5 K in B-fields up to 7 T, we
investigate the local density of states of a two-dimensional electron system
(2DES) created by Cs adsorption on p-type InSb(110). The 2DES, which in
contrast to previous STS studies exhibits a 2D Fermi level, shows standing
waves at B = 0 T with corrugations decreasing with energy and with wave numbers
in accordance with theory. In magnetic field percolating drift states are
observed within the disorder broadened Landau levels. Due to the large electric
field perpendicular to the surface, a beating pattern of the Landau levels is
found and explained quantitatively by Rashba spin splitting within the lowest
2DES subband. The Rashba splitting does not contribute significantly to the
standing wave patterns in accordance with theory.Comment: 9 pages, 9 figures, submitted to Phys. Rev.
Probing electron-electron interaction in quantum Hall systems with scanning tunneling spectroscopy
Using low-temperature scanning tunneling spectroscopy applied to the
Cs-induced two-dimensional electron system (2DES) on p-type InSb(110), we probe
electron-electron interaction effects in the quantum Hall regime. The 2DES is
decoupled from p-doped bulk states and exhibits spreading resistance within the
insulating quantum Hall phases. In quantitative agreement with calculations we
find an exchange enhancement of the spin splitting. Moreover, we observe that
both the spatially averaged as well as the local density of states feature a
characteristic Coulomb gap at the Fermi level. These results show that
electron-electron interaction effects can be probed down to a resolution below
all relevant length scales.Comment: supplementary movie in ancillary file
Bistability and oscillatory motion of natural nano-membranes appearing within monolayer graphene on silicon dioxide
The recently found material graphene is a truly two-dimensional crystal and
exhibits, in addition, an extreme mechanical strength. This in combination with
the high electron mobility favours graphene for electromechanical
investigations down to the quantum limit. Here, we show that a monolayer of
graphene on SiO2 provides natural, ultra-small membranes of diameters down to 3
nm, which are caused by the intrinsic rippling of the material. Some of these
nano-membranes can be switched hysteretically between two vertical positions
using the electric field of the tip of a scanning tunnelling microscope (STM).
They can also be forced to oscillatory motion by a low frequency ac-field.
Using the mechanical constants determined previously, we estimate a high
resonance frequency up to 0.4 THz. This might be favorable for
quantum-electromechanics and is prospective for single atom mass spectrometers.Comment: 9 pages, 4 figure
Recommended from our members
Current Knowledge and Attitudes Concerning Cost-Effectiveness in Glaucoma Pharmacotherapy: A Glaucoma Specialists Focus Group Study.
Background:Rising healthcare costs motivate continued cost-reduction efforts. To help lower costs associated with open-angle glaucoma (OAG), a prevalent, progressive disease with substantial direct and indirect costs, clinicians need to understand the cost-effectiveness of intraocular pressure (IOP)-lowering pharmacotherapies. There is little published information on clinicians' knowledge and attitudes about cost-effectiveness in glaucoma treatment. Purpose:This pilot focus group study aimed to explore clinician attitudes and perspectives around the costs and cost drivers of glaucoma therapy; the implementation of cost-effectiveness decisions; the clinical utility of cost-effectiveness studies; and the cost-effectiveness of available treatments. Methods:Six US glaucoma specialists participated in two separate teleconferencing sessions (three participants each), managed by an independent, skilled moderator (also a glaucoma specialist) using a discussion guide. Participants reviewed recent publications (n=25) on health economics outcomes research in glaucoma prior to the sessions. Results:Participants demonstrated a clear understanding of the economic burden of glaucoma therapy and identified medications, diagnostics, office visits, and treatment changes as key cost drivers. They considered cost-effectiveness an appropriate component of treatment decision-making but identified the need for additional data to inform these decisions. Participants indicated that there were only a few recent studies on health economics outcomes in glaucoma which evaluate parameters important to patient care, such as quality of life and medication adherence, and that longitudinal data were scant. In addition to efficacy, participants felt patient adherence and side-effect profile should be included in economic evaluations of glaucoma pharmacotherapy. Recently approved medications were evaluated in this context. Conclusion:Clinicians deem treatment decisions based on cost-effectiveness data as clinically appropriate. Newer IOP-lowering therapies with potentially greater efficacy and favorable side-effect and adherence profiles may help optimize cost-effectiveness. Future studies should include: clinicians' perspectives; lack of commercial bias; analysis of long-term outcomes/costs; more comprehensive parameters; real-world (including quality-of-life) data; and a robust Markov model
Structural Change Can Be Detected in Advanced-Glaucoma Eyes.
PurposeTo compare spectral-domain optical coherence tomography (SD-OCT) standard structural measures and a new three-dimensional (3D) volume optic nerve head (ONH) change detection method for detecting change over time in severely advanced-glaucoma (open-angle glaucoma [OAG]) patients.MethodsThirty-five eyes of 35 patients with very advanced glaucoma (defined as a visual field mean deviation < -21 dB) and 46 eyes of 30 healthy subjects to estimate aging changes were included. Circumpapillary retinal fiber layer thickness (cpRNFL), minimum rim width (MRW), and macular retinal ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured using the San Diego Automated Layer Segmentation Algorithm (SALSA). Progression was defined as structural loss faster than 95th percentile of healthy eyes. Three-dimensional volume ONH change was estimated using the Bayesian-kernel detection scheme (BKDS), which does not require extensive retinal layer segmentation.ResultsThe number of progressing glaucoma eyes identified was highest for 3D volume BKDS (13, 37%), followed by GCPIL (11, 31%), cpRNFL (4, 11%), and MRW (2, 6%). In advanced-OAG eyes, only the mean rate of GCIPL change reached statistical significance, -0.18 μm/y (P = 0.02); the mean rates of cpRNFL and MRW change were not statistically different from zero. In healthy eyes, the mean rates of cpRNFL, MRW, and GCIPL change were significantly different from zero. (all P < 0.001).ConclusionsGanglion cell-inner plexiform layer and 3D volume BKDS show promise for identifying change in severely advanced glaucoma. These results suggest that structural change can be detected in very advanced disease. Longer follow-up is needed to determine whether changes identified are false positives or true progression
Electrical transport and low-temperature scanning tunneling microscopy of microsoldered graphene
Using the recently developed technique of microsoldering, we perform a
systematic transport study of the influence of PMMA on graphene flakes
revealing a doping effect of up to 3.8x10^12 1/cm^2, but a negligible influence
on mobility and gate voltage induced hysteresis. Moreover, we show that the
microsoldered graphene is free of contamination and exhibits a very similar
intrinsic rippling as has been found for lithographically contacted flakes.
Finally, we demonstrate a current induced closing of the previously found
phonon gap appearing in scanning tunneling spectroscopy experiments, strongly
non-linear features at higher bias probably caused by vibrations of the flake
and a B-field induced double peak attributed to the 0.Landau level of graphene.Comment: 8 pages, 3 figure
Quantum Monte Carlo scheme for frustrated Heisenberg antiferromagnets
When one tries to simulate quantum spin systems by the Monte Carlo method,
often the 'minus-sign problem' is encountered. In such a case, an application
of probabilistic methods is not possible. In this paper the method has been
proposed how to avoid the minus sign problem for certain class of frustrated
Heisenberg models. The systems where this method is applicable are, for
instance, the pyrochlore lattice and the Heisenberg model. The method
works in singlet sector. It relies on expression of wave functions in dimer
(pseudo)basis and writing down the Hamiltonian as a sum over plaquettes. In
such a formulation, matrix elements of the exponent of Hamiltonian are
positive.Comment: 19 LaTeX pages, 6 figures, 1 tabl
Classical dimer model with anisotropic interactions on the square lattice
We discuss phase transitions and the phase diagram of a classical dimer model
with anisotropic interactions defined on a square lattice. For the attractive
region, the perturbation of the orientational order parameter introduced by the
anisotropy causes the Berezinskii-Kosterlitz-Thouless transitions from a
dimer-liquid to columnar phases. According to the discussion by Nomura and
Okamoto for a quantum-spin chain system [J. Phys. A 27, 5773 (1994)], we
proffer criteria to determine transition points and also universal
level-splitting conditions. Subsequently, we perform numerical diagonalization
calculations of the nonsymmetric real transfer matrices up to linear dimension
specified by L=20 and determine the global phase diagram. For the repulsive
region, we find the boundary between the dimer-liquid and the strong repulsion
phases. Based on the dispersion relation of the one-string motion, which
exhibits a two-fold ``zero-energy flat band'' in the strong repulsion limit, we
give an intuitive account for the property of the strong repulsion phase.Comment: 11 pages, 8 figure
- …
