243 research outputs found

    Valence band alignment and hole transport in amorphous crystalline silicon heterojunction solar cells

    Get PDF
    To investigate the hole transport across amorphous crystalline silicon heterojunctions, solar cells with varying band offsets were fabricated using amorphous silicon suboxide films. The suboxides enable good passivation if covered by a doped amorphous silicon layer. Increasing valence band offsets yield rising hole transport barriers and reduced device effciencies. Carrier transport by thermal emission is reduced and tunnel hopping through valence band tail states increases for larger barriers. Nevertheless, stacks of films with different band gaps, forming a band offset staircase at the heterojunction could allow the application of these layers in silicon heterojunction solar cell

    Valence band offset in heterojunctions between crystalline silicon and amorphous silicon sub oxides a SiOx H, 0 lt;x lt;2

    Get PDF
    The heterojunction between amorphous silicon sub oxides a SiOx H, 0 amp; 8201; lt; amp; 8201;x amp; 8201; lt; amp; 8201;2 and crystalline silicon c Si is investigated. We combine chemical vapor deposition with in system photoelectron spectroscopy in order to determine the valence band offset amp; 916;EV and the interface defect density, being technologically important junction parameters. amp; 916;EV increases from amp; 8776;0.3 amp; 8201;eV for the a Si H c Si interface to gt;4 amp; 8201;eV for the a SiO2 c Si interface, while the electronic quality of the heterointerface deteriorates. High bandgap a SiOx H is therefore unsuitable for the hole contact in heterojunction solar cells, due to electronic transport hindrance resulting from the large amp; 916;EV. Our method is readily applicable to other heterojunction

    Valence band offset and hole transport across a SiOx 0 lt;x lt;2 passivation layers in silicon heterojunction solar cells

    Get PDF
    In this work, the valence band offset amp; 916;EV and hole transport across the heterojunction between amorphous silicon suboxides a SiOx H and crystalline silicon c Si is investigated. Thin layers ranging from pure intrinsic a Si H to near stoichiometric a SiO2 were grown by varying precursor gas mixtures during chemical vapor deposition. A continuous increase of amp; 916;EV starting from amp; 8776; 0 .3 eV for the a Si H c Si to gt; 4 eV for the a SiO2 c Si heterointerface was measured by in system photoelectron spectroscopy. Furthermore, p a Si H i a SiOx H n c Si i,n a Si H heterojunction solar cells, with intrinsic a SiOx H passivation layers deposited using the same parameter sets, were fabricated. We report a linear decrease of the solar cell fill factor for increasing amp; 916;EV in the range of 0.27 0.85 eV. The reason is an increase of the barrier height for holes at the i a SiOx H n c Si heterojunction and a simultaneous change of the hole transport mechanism from thermionic emission to defect assisted tunnel hopping through valence band tail states. It is demonstrated that as compared to a single layer, significantly larger barrier heights can be tolerated in a stack of high band gap material and a material with lower band gap, forming a staircase of band offsets. This could allow the application of these layers in silicon heterojunction solar cell

    Valence band offset in heterojunctions between crystalline silicon and amorphous silicon (sub)oxides (a-SiOx:H, 0 < x < 2)

    Get PDF
    The heterojunction between amorphous silicon (sub)oxides (a-SiOx:H, 0 < x < 2) and crystalline silicon (c-Si) is investigated. We combine chemical vapor deposition with in-system photoelectron spectroscopy in order to determine the valence band offset ΔEV and the interface defect density, being technologically important junction parameters. ΔEV increases from ≈0.3 eV for the a-Si:H/c-Si interface to >4 eV for the a-SiO2/c-Si interface, while the electronic quality of the heterointerface deteriorates. High-bandgap a-SiOx:H is therefore unsuitable for the hole contact in heterojunction solar cells, due to electronic transport hindrance resulting from the large ΔEV. Our method is readily applicable to other heterojunctions

    Cytoplasmic Poly(A) Binding Protein-1 Binds to Genomically Encoded Sequences Within Mammalian mRNAs

    Get PDF
    The functions of the major mammalian cytoplasmic poly(A) binding protein, PABPC1, have been characterized predominantly in the context of its binding to the 3′ poly(A) tails of mRNAs. These interactions play important roles in post-transcriptional gene regulation by enhancing translation and mRNA stability. Here, we performed transcriptome-wide CLIP-seq analysis to identify additional PABPC1 binding sites within genomically encoded mRNA sequences that may impact on gene regulation. From this analysis, we found that PABPC1 binds directly to the canonical polyadenylation signal in thousands of mRNAs in the mouse transcriptome. PABPC1 binding also maps to translation initiation and termination sites bracketing open reading frames, exemplified most dramatically in replication-dependent histone mRNAs. Additionally, a more restricted subset of PABPC1 interaction sites comprised A-rich sequences within the 5′ UTRs of mRNAs, including Pabpc1 mRNA itself. Functional analyses revealed that these PABPC1 interactions in the 5′ UTR mediate both auto- and trans-regulatory translational control. In total, these findings reveal a repertoire of PABPC1 binding that is substantially broader than previously recognized with a corresponding potential to impact and coordinate post-transcriptional controls critical to a broad array of cellular functions

    Original experimental data and code for the Paper ”Quantum spins and hybridization in artificially-constructed chains of magnetic adatoms on a superconductor“

    Get PDF
    Magnetic adatom chains on surfaces constitute fascinating quantum spin systems. Superconducting substrates suppress interactions with bulk electronic excitations but couple the adatom spins to a chain of subgap Yu-Shiba-Rusinov (YSR) quasiparticles. Using a scanning tunneling microscope, we investigate such correlated spin-fermion systems by constructing Fe chains adatom by adatom on superconducting NbSe2. The adatoms couple entirely via the substrate, retaining their quantum spin nature. In dimers, we observe that the deepest YSR state undergoes a quantum phase transition due to Ruderman-Kittel-Kasuya-Yosida interactions, a distinct signature of quantum spins. Chains exhibit coherent hybridization and band formation of the YSR excitations, indicating ferromagnetic coupling. Longer chains develop separate domains due to coexisting charge-density-wave order of NbSe2. Despite the spin-orbit-coupled substrate, we find no signatures of Majoranas, possibly because quantum spins reduce the parameter range for topological superconductivity. We suggest that adatom chains are versatile systems for investigating correlated-electron physics and its interplay with topological superconductivity

    Quantum spins and hybridization in artificially-constructed chains of magnetic adatoms on a superconductor

    Get PDF
    Magnetic adatom chains on surfaces constitute fascinating quantum spin systems. Superconducting substrates suppress interactions with bulk electronic excitations but couple the adatom spins to a chain of subgap Yu-Shiba-Rusinov (YSR) quasiparticles. Using a scanning tunneling microscope, we investigate such correlated spin-fermion systems by constructing Fe chains adatom by adatom on superconducting NbSe2_2. The adatoms couple entirely via the substrate, retaining their quantum spin nature. In dimers, we observe that the deepest YSR state undergoes a quantum phase transition due to Ruderman-Kittel-Kasuya-Yosida interactions, a distinct signature of quantum spins. Chains exhibit coherent hybridization and band formation of the YSR excitations, indicating ferromagnetic coupling. Longer chains develop separate domains due to coexisting charge-density-wave order of NbSe2_2. Despite the spin-orbit-coupled substrate, we find no signatures of Majoranas, possibly because quantum spins reduce the parameter range for topological superconductivity. We suggest that adatom chains are versatile systems for investigating correlated-electron physics and its interplay with topological superconductivity

    Crystalline silicon solar cells with tetracene interlayers the path to silicon singlet fission heterojunction devices

    Get PDF
    Singlet exciton fission is an exciton multiplication process that occurs in certain organic materials, converting the energy of single highly-energetic photons into pairs of triplet excitons. This could be used to boost the conversion efficiency of crystalline silicon solar cells by creating photocurrent from energy that is usually lost to thermalisation. An appealing method of implementing singlet fission with crystalline silicon is to incorporate singlet fission media directly into a crystalline silicon device. To this end, we developed a solar cell that pairs the electron-selective contact of a high-efficiency silicon heterojunction cell with an organic singlet fission material, tetracene, and a PEDOT:PSS hole extraction layer. Tetracene and n-type crystalline silicon meet in a direct organic-inorganic heterojunction. In this concept the tetracene layer selectively absorbs blue-green light, generating triplet pairs that can dissociate or resonantly transfer at the organo-silicon interface, while lower-energy light is transmitted to the silicon absorber. UV photoemission measurements of the organic-inorganic interface showed an energy level alignment conducive to selective hole extraction from silicon by the organic layer. This was borne out by current-voltage measurements of devices subsequently produced. In these devices, the silicon substrate remained well-passivated beneath the tetracene thin film. Light absorption in the tetracene layer created a net reduction in current for the solar cell, but optical modelling of the external quantum efficiency spectrum suggested a small photocurrent contribution from the layer. This is a promising first result for the direct heterojunction approach to singlet fission on crystalline silicon

    Formation of Very Large Conductance Channels by Bacillus cereus Nhe in Vero and GH4 Cells Identifies NheA + B as the Inherent Pore-Forming Structure

    Get PDF
    The nonhemolytic enterotoxin (Nhe) produced by Bacillus cereus is a pore-forming toxin consisting of three components, NheA, -B and -C. We have studied effects of Nhe on primate epithelial cells (Vero) and rodent pituitary cells (GH4) by measuring release of lactate dehydrogenase (LDH), K+ efflux and the cytosolic Ca2+ concentration ([Ca2+]i). Plasma membrane channel events were monitored by patch-clamp recordings. Using strains of B. cereus lacking either NheA or -C, we examined the functional role of the various components. In both cell types, NheA + B + C induced release of LDH and K+ as well as Ca2+ influx. A specific monoclonal antibody against NheB abolished LDH release and elevation of [Ca2+]i. Exposure to NheA + B caused a similar K+ efflux and elevation of [Ca2+]i as NheA + B + C in GH4 cells, whereas in Vero cells the rate of K+ efflux was reduced by 50% and [Ca2+]i was unaffected. NheB + C had no effect on either cell type. Exposure to NheA + B + C induced large-conductance steps in both cell types, and similar channel insertions were observed in GH4 cells exposed to NheA + B. In Vero cells, NheA + B induced channels of much smaller conductance. NheB + C failed to insert membrane channels. The conductance of the large channels in GH4 cells was about 10 nS. This is the largest channel conductance reported in cell membranes under quasi-physiological conditions. In conclusion, NheA and NheB are necessary and sufficient for formation of large-conductance channels in GH4 cells, whereas in Vero cells such large-conductance channels are in addition dependent on NheC

    Supporting dynamic change detection: using the right tool for the task

    Get PDF
    Detecting task-relevant changes in a visual scene is necessary for successfully monitoring and managing dynamic command and control situations. Change blindness—the failure to notice visual changes—is an important source of human error. Change History EXplicit (CHEX) is a tool developed to aid change detection and maintain situation awareness; and in the current study we test the generality of its ability to facilitate the detection of changes when this subtask is embedded within a broader dynamic decision-making task. A multitasking air-warfare simulation required participants to perform radar-based subtasks, for which change detection was a necessary aspect of the higher-order goal of protecting one’s own ship. In this task, however, CHEX rendered the operator even more vulnerable to attentional failures in change detection and increased perceived workload. Such support was only effective when participants performed a change detection task without concurrent subtasks. Results are interpreted in terms of the NSEEV model of attention behavior (Steelman, McCarley, & Wickens, Hum. Factors 53:142–153, 2011; J. Exp. Psychol. Appl. 19:403–419, 2013), and suggest that decision aids for use in multitasking contexts must be designed to fit within the available workload capacity of the user so that they may truly augment cognition
    corecore