18 research outputs found

    Tumor Cell Marker PVRL4 (Nectin 4) Is an Epithelial Cell Receptor for Measles Virus

    Get PDF
    Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4) rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a property that is characteristic of receptor-associated viral infections

    Is dolphin morbillivirus virulent for white-beaked dolphins (Lagenorhynchus albirostris)?

    Full text link
    The virulence of morbilliviruses for toothed whales (odontocetes) appears to differ according to host species. In 4 species of odontocetes, morbilliviruses are highly virulent, causing large-scale epizootics with high mortality. In 8 other species of odontocetes, including white-beaked dolphins (Lagenorhynchus albirostris), morbilliviruses have been found as an incidental infection. In these species, the virulence of morbilliviruses is not clear. Therefore, the admission of 2 white-beaked dolphins with morbillivirus infection into a rehabilitation center provided a unique opportunity to investigate the virulence of morbillivirus in this species. By phylogenetic analysis, the morbilliviruses in both animals were identified as a dolphin morbillivirus (DMV) most closely related to that detected in a white-beaked dolphin in Germany in 2007. Both animals were examined clinically and pathologically. Case No. 1 had a chronic neural DMV infection, characterized by polioencephalitis in the cerebrum and morbillivirus antigen expression limited to neurons and glial cells. Surprisingly, no nervous signs were observed in this animal during the 6 months before death. Case No. 2 had a subacute systemic DMV infection, characterized by interstitial pneumonia, leucopenia, lymphoid depletion, and DMV antigen expression in mononuclear cells and syncytia in the lung and in mononuclear cells in multiple lymphoid organs. Cause of death was not attributed to DMV infection in either animal. DMV was not detected in 2 contemporaneously stranded white-beaked dolphins. Stranding rate did not increase in the region. These results suggest that DMV is not highly virulent for white-beaked dolphins.Peer reviewe
    corecore