8,246 research outputs found
Magpie: towards a semantic web browser
Web browsing involves two tasks: finding the right web page and then making sense of its content. So far, research has focused on supporting the task of finding web resources through ‘standard’ information retrieval mechanisms, or semantics-enhanced search. Much less attention has been paid to the second problem. In this paper we describe Magpie, a tool which supports the
interpretation of web pages. Magpie offers complementary knowledge sources, which a reader can call upon to quickly gain access to any background knowledge relevant to a web resource. Magpie automatically associates an ontologybased
semantic layer to web resources, allowing relevant services to be invoked within a standard web browser. Hence, Magpie may be seen as a step towards a semantic web browser. The functionality of Magpie is illustrated using examples of how it has been integrated with our lab’s web resources
Electron surface layer at the interface of a plasma and a dielectric wall
We study the potential and the charge distribution across the interface of a
plasma and a dielectric wall. For this purpose, the charge bound to the wall is
modelled as a quasi-stationary electron surface layer which satisfies Poisson's
equation and minimizes the grand canonical potential of the wall-thermalized
excess electrons constituting the wall charge. Based on an effective model for
a graded interface taking into account the image potential and the offset of
the conduction band to the potential just outside the dielectric, we
specifically calculate the potential and the electron distribution for
magnesium oxide, silicon dioxide and sapphire surfaces in contact with a helium
discharge. Depending on the electron affinity of the surface, we find two
vastly different behaviors. For negative electron affinity, electrons do not
penetrate into the wall and an external surface charge is formed in the image
potential, while for positive electron affinity, electrons penetrate into the
wall and a space charge layer develops in the interior of the dielectric. We
also investigate how the electron surface layer merges with the bulk of the
dielectric.Comment: 15 pages, 9 figures, accepted versio
Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion
Recently, there has been a wide interest in the study of aggregation
equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate
diffusion. The focus of this paper is the unification and generalization of the
well-posedness theory of these models. We prove local well-posedness on bounded
domains for dimensions and in all of space for , the
uniqueness being a result previously not known for PKS with degenerate
diffusion. We generalize the notion of criticality for PKS and show that
subcritical problems are globally well-posed. For a fairly general class of
problems, we prove the existence of a critical mass which sharply divides the
possibility of finite time blow up and global existence. Moreover, we compute
the critical mass for fully general problems and show that solutions with
smaller mass exists globally. For a class of supercritical problems we prove
finite time blow up is possible for initial data of arbitrary mass.Comment: 31 page
The area of horizons and the trapped region
This paper considers some fundamental questions concerning marginally trapped
surfaces, or apparent horizons, in Cauchy data sets for the Einstein equation.
An area estimate for outermost marginally trapped surfaces is proved. The proof
makes use of an existence result for marginal surfaces, in the presence of
barriers, curvature estimates, together with a novel surgery construction for
marginal surfaces. These results are applied to characterize the boundary of
the trapped region.Comment: 44 pages, v3: small changes in presentatio
Instability of ion kinetic waves in a weakly ionized plasma
The fundamental higher-order Landau plasma modes are known to be generally
heavily damped. We show that these modes for the ion component in a weakly
ionized plasma can be substantially modified by ion-neutral collisions and a dc
electric field driving ion flow so that some of them can become unstable. This
instability is expected to naturally occur in presheaths of gas discharges at
sufficiently small pressures and thus affect sheaths and discharge structures.Comment: Published in Phys. Rev. E, see
http://link.aps.org/doi/10.1103/PhysRevE.85.02641
Partial Schauder estimates for second-order elliptic and parabolic equations
We establish Schauder estimates for both divergence and non-divergence form
second-order elliptic and parabolic equations involving H\"older semi-norms not
with respect to all, but only with respect to some of the independent
variables.Comment: CVPDE, accepted (2010)
- …