144 research outputs found

    The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat

    Get PDF
    The selective type IV phosphodiesterase inhibitor, rolipram, has been shown to improve long-term memory and can reverse the cholinergic deficit caused by scopolamine. However, the underlying mechanisms of action of rolipram remain obscure. The present study investigates the effect of rolipram in a serotonergic-deficit model of acute tryptophan depletion (ATD). In addition, the levels of plasma tryptophan (TRP) were compared to object recognition performance. The experiments were conducted using male Wistar rats. The time-dependent effect of ATD treatment (a gelatin-based protein mixture) on plasma TRP levels (0, 1, 3, and 6 h after injection) and object recognition task (ORT) performance (0.5, 1, 3, and 6 h after ATD treatment) was examined. The effect of rolipram (0, 0.01, 0.03, and 0.1 mg/kg, i.p.) was tested in the condition in which ATD induced a clear memory deficit. ATD significantly lowered the plasma TRP ratio (TRP/Sigma large neutral amino acid) with a maximum of 48%, approximately 1 h after administration. Furthermore, ATD impairs ORT performance when administered 3 h before testing. Rolipram (0.1 mg/kg) reversed the memory deficit induced by ATD in a dose-dependent manner. On the basis of previous studies and the ability to reverse a serotonergic deficit, we suggest that rolipram may act through elevation of cyclic adenosine monophosphate levels and subsequent increase in neurotransmitter release

    Pharmacokinetics of acute tryptophan depletion using a gelatin-based protein in male and female Wistar rats

    Get PDF
    The essential amino acid tryptophan is the precursor of the neurotransmitter serotonin. By depleting the body of tryptophan, brain tryptophan and serotonin levels are temporarily reduced. In this paper, several experiments are described in which dose and treatment effects of acute tryptophan depletion (ATD) using a gelatin-based protein–carbohydrate mixture were studied in male and female Wistar rats. Two or three doses of tryptophan depleting mixture resulted in 65–70% depletion after 2–4 h in males. ATD effects were similar in females, although females may return to baseline levels faster. Treatment effects after four consecutive days of ATD were similar to the effects of 1 day of treatment. Object recognition memory was impaired 2, 4, and 6 h after the first of two doses of ATD, suggesting that the central effects occurred rapidly and continued at least 6 h, in spite of decreasing treatment effects on plasma tryptophan levels at that time point. The method of acute tryptophan depletion described here can be used to study the relationship between serotonin and behaviour in both male and female rats

    The Transient Receptor Potential Ion Channel TRPV6 Is Expressed at Low Levels in Osteoblasts and Has Little Role in Osteoblast Calcium Uptake

    Get PDF
    Background: TRPV6 ion channels are key mediators of regulated transepithelial absorption of Ca2+ within the small intestine. Trpv6-/- mice were reported to have lower bone density than wild-type littermates and significant disturbances in calcium homeostasis that suggested a role for TRPV6 in osteoblasts during bone formation and mineralization. TRPV6 and molecules related to transepithelial Ca2+ transport have been reported to be expressed at high levels in human and mouse osteoblasts. Results: Transmembrane ion currents in whole cell patch clamped SaOS-2 osteoblasts did not show sensitivity to ruthenium red, an inhibitor of TRPV5/6 ion channels, and 45Ca uptake was not significantly affected by ruthenium red in either SaOS-2 (P = 0.77) or TE-85 (P = 0.69) osteoblastic cells. In contrast, ion currents and 45Ca uptake were both significantly affected in a human bronchial epithelial cell line known to express TRPV6. TRPV6 was expressed at lower levels in osteoblastic cells than has been reported in some literature. In SaOS-2 TRPV6 mRNA was below the assay detection limit; in TE-85 TRPV6 mRNA was detected at 6.90±1.9 × 10−5 relative to B2M. In contrast, TRPV6 was detected at 7.7±3.0 × 10−2 and 2.38±0.28 × 10−4 the level of B2M in human carcinoma-derived cell lines LNCaP and CaCO-2 respectively. In murine primary calvarial osteoblasts TRPV6 was detected at 3.80±0.24 × 10−5 relative to GAPDH, in contrast with 4.3±1.5 × 10−2 relative to GAPDH in murine duodenum. By immunohistochemistry, TRPV6 was expressed mainly in myleocytic cells of the murine bone marrow and was observed only at low levels in murine osteoblasts, osteocytes or growth plate cartilage. Conclusions: TRPV6 is expressed only at low levels in osteoblasts and plays little functional role in osteoblastic calcium uptake

    Diabetes Stimulates Osteoclastogenesis by Acidosis-Induced Activation of Transient Receptor Potential Cation Channels

    Get PDF
    Patients with type 1 diabetes have lower bone mineral density and higher risk of fractures. The role of osteoblasts in diabetes-related osteoporosis is well acknowledged whereas the role of osteoclasts (OCLs) is still unclear. We hypothesize that OCLs participate in pathological bone remodeling. We conducted studies in animals (streptozotocin-induced type 1 diabetic mice) and cellular models to investigate canonical and non-canonical mechanisms underlying excessive OCL activation. Diabetic mice show an increased number of active OCLs. In vitro studies demonstrate the involvement of acidosis in OCL activation and the implication of transient receptor potential cation channel subfamily V member 1 (TRPV1). In vivo studies confirm the establishment of local acidosis in the diabetic bone marrow (BM) as well as the ineffectiveness of insulin in correcting the pH variation and osteoclast activation. Conversely, treatment with TRPV1 receptor antagonists re-establishes a physiological OCL availability. These data suggest that diabetes causes local acidosis in the BM that in turn increases osteoclast activation through the modulation of TRPV1. The use of clinically available TRPV1 antagonists may provide a new means to combat bone problems associated with diabetes

    Effects of tryptophan depletion and tryptophan loading on the affective response to high-dose CO2 challenge in healthy volunteers

    Get PDF
    It has been reported that in panic disorder (PD), tryptophan depletion enhances the vulnerability to experimentally induced panic, while the administration of serotonin precursors blunts the response to challenges. Using a high-dose carbon dioxide (CO2) challenge, we aimed to investigate the effects of acute tryptophan depletion (ATD) and acute tryptophan loading (ATL) on CO2-induced panic response in healthy volunteers. Eighteen healthy volunteers participated in a randomized, double-blind placebo-controlled study. Each subject received ATD, ATL, and a balanced condition (BAL) in separate days, and a double-breath 35% CO2 inhalation 4.5 h after treatment. Tryptophan (Trp) manipulations were obtained adding 0 g (ATD), 1.21 g (BAL), and 5.15 g (ATL) of l-tryptophan to a protein mixture lacking Trp. Assessments consisted of a visual analogue scale for affect (VAAS) and panic symptom list. A separate analysis on a sample of 55 subjects with a separate-group design has also been performed to study the relationship between plasma amino acid levels and subjective response to CO2. CO2-induced subjective distress and breathlessness were significantly lower after ATD compared to BAL and ATL (p <0.05). In the separate-group analysis, Delta VAAS scores were positively correlated to the ratio Trp:I LNAA pound after treatment (r = 0.39; p <0.05). The present results are in line with preclinical data indicating a role for the serotonergic system in promoting the aversive respiratory sensations to hypercapnic stimuli (Richerson, Nat Rev Neurosci 5(6):449-461, 2004). The differences observed in our study, compared to previous findings in PD patients, might depend on an altered serotonergic modulatory function in patients compared to healthy subjects

    Scopolamine Administration Modulates Muscarinic, Nicotinic and NMDA Receptor Systems

    Get PDF
    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration

    The impact of inflammation on bone mass in children

    Get PDF
    Bone is a dynamic tissue. Skeletal bone integrity is maintained through bone modeling and remodeling. The mechanisms underlying this bone mass regulation are complex and interrelated. An imbalance in the regulation of bone remodeling through bone resorption and bone formation results in bone loss. Chronic inflammation influences bone mass regulation. Inflammation-related bone disorders share many common mechanisms of bone loss. These mechanisms are ultimately mediated through the uncoupling of bone remodeling. Cachexia, physical inactivity, pro-inflammatory cytokines, as well as iatrogenic factors related to effects of immunosuppression are some of the common mechanisms. Recently, cytokine signaling through the central nervous system has been investigated for its potential role in bone mass dysregulation in inflammatory conditions. Growing research on the molecular mechanisms involved in inflammation-induced bone loss may lead to more selective therapeutic targeting of these pathological signaling pathways
    corecore