27 research outputs found

    Density Functional Theory of Magnetic Systems Revisited

    Full text link
    The Hohenberg-Kohn theorem of density functional theory (DFT) for the case of electrons interacting with an external magnetic field (that couples to spin only) is examined in more detail than previously. A unexpected generalization is obtained: in certain cases (which include half metallic ferromagnets and magnetic insulators) the ground state, and hence the spin density matrix, is invariant for some non-zero range of a shift in uniform magnetic field. In such cases the ground state energy is not a functional of the spin density matrix alone. The energy gap in an insulator or a half metal is shown to be a ground state property of the N-electron system in magnetic DFT.Comment: Four pages, one figure. Submitted for publication, April 13, 2000 Revised, Sept 27, 200

    Monotonicity of quantum ground state energies: Bosonic atoms and stars

    Full text link
    The N-dependence of the non-relativistic bosonic ground state energy is studied for quantum N-body systems with either Coulomb or Newton interactions. The Coulomb systems are "bosonic atoms," with their nucleus fixed, and the Newton systems are "bosonic stars". In either case there exists some third order polynomial in N such that the ratio of the ground state energy to the respective polynomial grows monotonically in N. Some applications of these new monotonicity results are discussed

    Self-dual noncommutative \phi^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory

    Full text link
    We study quartic matrix models with partition function Z[E,J]=\int dM \exp(trace(JM-EM^2-(\lambda/4)M^4)). The integral is over the space of Hermitean NxN-matrices, the external matrix E encodes the dynamics, \lambda>0 is a scalar coupling constant and the matrix J is used to generate correlation functions. For E not a multiple of the identity matrix, we prove a universal algebraic recursion formula which gives all higher correlation functions in terms of the 2-point function and the distinct eigenvalues of E. The 2-point function itself satisfies a closed non-linear equation which must be solved case by case for given E. These results imply that if the 2-point function of a quartic matrix model is renormalisable by mass and wavefunction renormalisation, then the entire model is renormalisable and has vanishing \beta-function. As main application we prove that Euclidean \phi^4-quantum field theory on four-dimensional Moyal space with harmonic propagation, taken at its self-duality point and in the infinite volume limit, is exactly solvable and non-trivial. This model is a quartic matrix model, where E has for N->\infty the same spectrum as the Laplace operator in 4 dimensions. Using the theory of singular integral equations of Carleman type we compute (for N->\infty and after renormalisation of E,\lambda) the free energy density (1/volume)\log(Z[E,J]/Z[E,0]) exactly in terms of the solution of a non-linear integral equation. Existence of a solution is proved via the Schauder fixed point theorem. The derivation of the non-linear integral equation relies on an assumption which we verified numerically for coupling constants 0<\lambda\leq (1/\pi).Comment: LaTeX, 64 pages, xypic figures. v4: We prove that recursion formulae and vanishing of \beta-function hold for general quartic matrix models. v3: We add the existence proof for a solution of the non-linear integral equation. A rescaling of matrix indices was necessary. v2: We provide Schwinger-Dyson equations for all correlation functions and prove an algebraic recursion formula for their solutio

    Multidimensional quantum solitons with nondegenerate parametric interactions: Photonic and Bose-Einstein condensate environments

    Get PDF
    We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings. This can be applied to treat photonic chi((2)) and chi((3)) interactions, and interactions in atomic Bose-Einstein condensates or quantum Fermi gases, describing coherent molecule formation together with a-wave scattering. The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding energies than chi((3)) quantum solitons, and the resulting effects could potentially be experimentally tested in highly nonlinear optical parametric media or interacting matter-wave systems. N-particle quantum solitons and the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-Einstein condensates (BEC's) are given, where we predict the possibility of forming coupled BEC solitons in three space dimensions, and analyze superchemistry dynamics

    Stabilit�t der Materie

    No full text
    corecore