6,165 research outputs found
Proof of Bose-Einstein Condensation for Dilute Trapped Gases
The ground state of bosonic atoms in a trap has been shown experimentally to
display Bose-Einstein condensation (BEC). We prove this fact theoretically for
bosons with two-body repulsive interaction potentials in the dilute limit,
starting from the basic Schroedinger equation; the condensation is 100% into
the state that minimizes the Gross-Pitaevskii energy functional. This is the
first rigorous proof of BEC in a physically realistic, continuum model.Comment: Revised version with some simplifications and clarifications. To
appear in Phys. Rev. Let
A Rigorous Derivation of the Gross-Pitaevskii Energy Functional for a Two-Dimensional Bose Gas
We consider the ground state properties of an inhomogeneous two-dimensional
Bose gas with a repulsive, short range pair interaction and an external
confining potential. In the limit when the particle number is large but
is small, where is the average particle density and
the scattering length, the ground state energy and density are rigorously
shown to be given to leading order by a Gross-Pitaevskii (GP) energy functional
with a coupling constant . In contrast to the 3D
case the coupling constant depends on through the mean density. The GP
energy per particle depends only on . In 2D this parameter is typically so
large that the gradient term in the GP energy functional is negligible and the
simpler description by a Thomas-Fermi type functional is adequate.Comment: 14 pages, no figures, latex 2e. References, some clarifications and
an appendix added. To appear in Commun. Math. Phy
Free Energy of a Dilute Bose Gas: Lower Bound
A lower bound is derived on the free energy (per unit volume) of a
homogeneous Bose gas at density and temperature . In the dilute
regime, i.e., when , where denotes the scattering length of
the pair-interaction potential, our bound differs to leading order from the
expression for non-interacting particles by the term . Here, denotes the critical density for
Bose-Einstein condensation (for the non-interacting gas), and denotes
the positive part. Our bound is uniform in the temperature up to temperatures
of the order of the critical temperature, i.e., or smaller.
One of the key ingredients in the proof is the use of coherent states to extend
the method introduced in [arXiv:math-ph/0601051] for estimating correlations to
temperatures below the critical one.Comment: LaTeX2e, 53 page
Ground State Asymptotics of a Dilute, Rotating Gas
We investigate the ground state properties of a gas of interacting particles
confined in an external potential in three dimensions and subject to rotation
around an axis of symmetry. We consider the so-called Gross-Pitaevskii (GP)
limit of a dilute gas. Analyzing both the absolute and the bosonic ground state
of the system we show, in particular, their different behavior for a certain
range of parameters. This parameter range is determined by the question whether
the rotational symmetry in the minimizer of the GP functional is broken or not.
For the absolute ground state, we prove that in the GP limit a modified GP
functional depending on density matrices correctly describes the energy and
reduced density matrices, independent of symmetry breaking. For the bosonic
ground state this holds true if and only if the symmetry is unbroken.Comment: LaTeX2e, 37 page
The TF Limit for Rapidly Rotating Bose Gases in Anharmonic Traps
Starting from the full many body Hamiltonian we derive the leading order
energy and density asymptotics for the ground state of a dilute, rotating Bose
gas in an anharmonic trap in the ` Thomas Fermi' (TF) limit when the
Gross-Pitaevskii coupling parameter and/or the rotation velocity tend to
infinity. Although the many-body wave function is expected to have a
complicated phase, the leading order contribution to the energy can be computed
by minimizing a simple functional of the density alone
Stability of Matter in Magnetic Fields
In the presence of arbitrarily large magnetic fields, matter composed of
electrons and nuclei was known to be unstable if or is too large.
Here we prove that matter {\it is stable\/} if and
.Comment: 10 pages, LaTe
Stability of Relativistic Matter With Magnetic Fields
Stability of matter with Coulomb forces has been proved for non-relativistic
dynamics, including arbitrarily large magnetic fields, and for relativistic
dynamics without magnetic fields. In both cases stability requires that the
fine structure constant alpha be not too large. It was unclear what would
happen for both relativistic dynamics and magnetic fields, or even how to
formulate the problem clearly. We show that the use of the Dirac operator
allows both effects, provided the filled negative energy `sea' is defined
properly. The use of the free Dirac operator to define the negative levels
leads to catastrophe for any alpha, but the use of the Dirac operator with
magnetic field leads to stability.Comment: This is an announcement of the work in cond-mat/9610195 (LaTeX
The Ground States of Large Quantum Dots in Magnetic Fields
The quantum mechanical ground state of a 2D -electron system in a
confining potential ( is a coupling constant) and a homogeneous
magnetic field is studied in the high density limit , with fixed. It is proved that the ground state energy and
electronic density can be computed {\it exactly} in this limit by minimizing
simple functionals of the density. There are three such functionals depending
on the way varies as : A 2D Thomas-Fermi (TF) theory applies
in the case ; if the correct limit theory
is a modified -dependent TF model, and the case is described
by a ``classical'' continuum electrostatic theory. For homogeneous potentials
this last model describes also the weak coupling limit for arbitrary
. Important steps in the proof are the derivation of a new Lieb-Thirring
inequality for the sum of eigenvalues of single particle Hamiltonians in 2D
with magnetic fields, and an estimation of the exchange-correlation energy. For
this last estimate we study a model of classical point charges with
electrostatic interactions that provides a lower bound for the true quantum
mechanical energy.Comment: 57 pages, Plain tex, 5 figures in separate uufil
The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions
We show that the Lieb-Liniger model for one-dimensional bosons with repulsive
-function interaction can be rigorously derived via a scaling limit
from a dilute three-dimensional Bose gas with arbitrary repulsive interaction
potential of finite scattering length. For this purpose, we prove bounds on
both the eigenvalues and corresponding eigenfunctions of three-dimensional
bosons in strongly elongated traps and relate them to the corresponding
quantities in the Lieb-Liniger model. In particular, if both the scattering
length and the radius of the cylindrical trap go to zero, the
Lieb-Liniger model with coupling constant is derived. Our bounds
are uniform in in the whole parameter range , and apply
to the Hamiltonian for three-dimensional bosons in a spectral window of size
above the ground state energy.Comment: LaTeX2e, 19 page
- …