6,035 research outputs found

    Energy Loss in Nuclear Drell-Yan Process

    Get PDF
    By means of the nuclear parton distributions which can be used to provide a good explanation for the EMC effect in the whole x range, we investigate the energy loss effect in nuclear Drell-Yan process. When the cross section of lepton pair production is considered varying with the center-of-mass energy of the nucleon-nucleon collision, we find that the nuclear Drell-Yan(DY) ratio is suppressed due to the energy loss, which balances the overestimate of the DY ratio only in consideration of the effect of nuclear parton distributions.Comment: 10 pages, LaTeX, 1 ps figures, To appear in Eur. Phys. J.

    Relationship between the symmetry energy and the single-nucleon potential in isospin-asymmetric nucleonic matter

    Full text link
    In this contribution, we review the most important physics presented originally in our recent publications. Some new analyses, insights and perspectives are also provided. We showed recently that the symmetry energy Esym(ρ)E_{sym}(\rho) and its density slope L(ρ)L(\rho) at an arbitrary density ρ\rho can be expressed analytically in terms of the magnitude and momentum dependence of the single-nucleon potentials using the Hugenholtz-Van Hove (HVH) theorem. These relationships provide new insights about the fundamental physics governing the density dependence of nuclear symmetry energy. Using the isospin and momentum (k) dependent MDI interaction as an example, the contribution of different terms in the single-nucleon potential to the Esym(ρ)E_{sym}(\rho) and L(ρ)L(\rho) are analyzed in detail at different densities. It is shown that the behavior of Esym(ρ)E_{sym}(\rho) is mainly determined by the first-order symmetry potential Usym,1(ρ,k)U_{sym,1}(\rho,k) of the single-nucleon potential. The density slope L(ρ)L(\rho) depends not only on the first-order symmetry potential Usym,1(ρ,k)U_{sym,1}(\rho,k) but also the second-order one Usym,2(ρ,k)U_{sym,2}(\rho,k). Both the Usym,1(ρ,k)U_{sym,1}(\rho,k) and Usym,2(ρ,k)U_{sym,2}(\rho,k) at normal density ρ0\rho_0 are constrained by the isospin and momentum dependent nucleon optical potential extracted from the available nucleon-nucleus scattering data. The Usym,2(ρ,k)U_{sym,2}(\rho,k) especially at high density and momentum affects significantly the L(ρ)L(\rho), but it is theoretically poorly understood and currently there is almost no experimental constraints known.Comment: 9 pages, 6 figures, Review paper, Contribution to the "Topical Issue" on "Nuclear Symmetry Energy" in European Physical Journal

    Effects of momentum-dependent nuclear potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions

    Get PDF
    Using an isospin- and momentum-dependent transport model, we study the effects due to the momentum dependence of isoscalar nuclear potential as well as that of symmetry potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei. It is found that both observables are affected significantly by the momentum dependence of nuclear potential, leading to a reduction of their sensitivity to the stiffness of nuclear symmetry energy. However, the t/3^{3}He ratio remains a sensitive probe of the density dependence of nuclear symmetry energy.Comment: 20 pages, 11 figure

    Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits

    Full text link
    We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supra-normal densities and of asymmetric matter at sub-saturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in ^{208}Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ\rho meson required by the partial restoration of chiral symmetry.Comment: Accepted version to appear in PRC (2007
    corecore