9,053 research outputs found

    Isospin dependent global neutron-nucleus optical model potential

    Full text link
    In this paper, we construct a new phenomenological isospin dependent global neutron-nucleus optical model potential. Based on the existing experimental data of elastic scattering angular distributions for neutron as projectile, we obtain a set of the isospin dependent global neutron-nucleus optical model potential parameters, which can basically reproduce the experimental data for target nuclei from 24^{24}Mg to 242^{242}Pu with the energy region up to 200 MeV.Comment: 35 pages, 12 figures, 3 tables. Discussions and 1 table added, 24 figures removed. Accepted version to appear in NP

    Energy Loss in Nuclear Drell-Yan Process

    Get PDF
    By means of the nuclear parton distributions which can be used to provide a good explanation for the EMC effect in the whole x range, we investigate the energy loss effect in nuclear Drell-Yan process. When the cross section of lepton pair production is considered varying with the center-of-mass energy of the nucleon-nucleon collision, we find that the nuclear Drell-Yan(DY) ratio is suppressed due to the energy loss, which balances the overestimate of the DY ratio only in consideration of the effect of nuclear parton distributions.Comment: 10 pages, LaTeX, 1 ps figures, To appear in Eur. Phys. J.

    Effects of momentum-dependent nuclear potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions

    Get PDF
    Using an isospin- and momentum-dependent transport model, we study the effects due to the momentum dependence of isoscalar nuclear potential as well as that of symmetry potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei. It is found that both observables are affected significantly by the momentum dependence of nuclear potential, leading to a reduction of their sensitivity to the stiffness of nuclear symmetry energy. However, the t/3^{3}He ratio remains a sensitive probe of the density dependence of nuclear symmetry energy.Comment: 20 pages, 11 figure

    Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits

    Full text link
    We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supra-normal densities and of asymmetric matter at sub-saturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in ^{208}Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ\rho meson required by the partial restoration of chiral symmetry.Comment: Accepted version to appear in PRC (2007

    The Non-perturbative Effect on R=σL/σTR=\sigma_L /\sigma_T from QCD Vacuum

    Full text link
    We investigate the non-perturbative effects on the ratio R=σL/σTR=\sigma_L /\sigma_T in lepton-nucleon deep inelastic scattering by taking into account the lowest dimensional condensate contributions from the QCD vacuum. By combining conventional perturbative QCD corrections and the Georgi- Politzer target-mass effects with the non-perturbative effects from the QCD vacuum, we give a good description of the Q2Q^2 and xx dependences of RR in comparison with the recent experimental data.Comment: 13 pages, LaTeX, 2 eps figures, To appear in Phys. Lett.

    Large-mass neutron stars with hyperonization

    Full text link
    Within a density-dependent relativistic mean-field model using in-medium meson-hadron coupling constants and meson masses, we explore effects of in-medium hyperon interactions on properties of neutron stars. It is found that the hyperonic constituents in large-mass neutron stars can not be simply ruled out, while the recently measured mass of the millisecond pulsar J1614-2230 can constrain significantly the in-medium hyperon interactions. Moreover, effects of nuclear symmetry energy on hyperonization in neutron stars are also discussed

    Effects of Neutron-Proton Short-Range Correlation on the Equation of State of Dense Neutron-Rich Nucleonic Matter

    Full text link
    The strongly isospin-dependent tensor force leads to short-range correlations (SRC) between neutron-proton (deuteron-like) pairs much stronger than those between proton-proton and neutron-neutron pairs. As a result of the short-range correlations, the single-nucleon momentum distribution develops a high-momentum tail above the Fermi surface. Because of the strongly isospin-dependent short-range correlations, in neutron-rich matter a higher fraction of protons will be depleted from its Fermi sea and populate above the Fermi surface compared to neutrons. This isospin-dependent nucleon momentum distribution may have effects on: (1) nucleon spectroscopic factors of rare isotopes, (2) the equation of state especially the density dependence of nuclear symmetry energy, (3) the coexistence of a proton-skin in momentum space and a neutron-skin in coordinate space (i.e., protons move much faster than neutrons near the surface of heavy nuclei). In this talk, we discuss these features and their possible experimental manifestations. As an example, SRC effects on the nuclear symmetry energy are discussed in detail using a modified Gogny-Hartree-Fock (GHF) energy density functional (EDF) encapsulating the SRC-induced high momentum tail (HMT) in the single-nucleon momentum distribution

    La politique extérieure de l’URSS après Brejnev

    Get PDF
    corecore