79 research outputs found

    Fabry nephropathy: 5 years of enzyme replacement therapy--a short review

    Get PDF

    Fabry in the older patient: Clinical consequences and possibilities for treatment.

    Get PDF
    Baseline demographic and phenotypic characteristics of patients aged ≥50years in the Fabry Outcome Survey (Shire; data extracted June 2014) were compared with younger adults to investigate potential factors influencing treatment decisions in later life. Age groups were defined using age at treatment initiation or at FOS entry for untreated patients: 18-49 (n=1344; 49.5% male; 64.6% received agalsidase alfa enzyme replacement therapy [ERT]); 50-64 (n=537; 35.4% male; 74.3% treated); 65-74 (n=137; 32.1% male; 68.6% treated); and ≥75years (n=26; 26.9% male; 50.0% treated). Successive age groups showed higher median age at first symptom and diagnosis. Median alpha-galactosidase A activity, measured as percentage activity of the midpoint of the normal range, was much greater in females than males of all groups except ≥75years (33.4% in females; 27.8% in males). Patients aged ≥75years showed greater values than patients aged 18-49years for median left ventricular mass indexed to height (62.7 vs 42.4g/m(2.7)), mean ventricular wall thickness (15.0 vs 10.0mm) and prevalence of hypertension (57.7% vs 21.8%), and lower median estimated glomerular filtration rate (Modification of Diet in Renal Disease: 65.6 vs 98.5mL/min/1.73m(2)). Larger proportions in the groups aged ≥50 exhibited cardiac and/or cerebrovascular manifestations compared with patients aged 18-49years. The smaller proportion of patients receiving ERT aged ≥75years compared with the younger groups might reflect relatively milder disease burden or physician/patient reluctance to initiate/continue ERT at this age. Further studies are needed to increase knowledge of Fabry disease and ERT in later life

    Consensus recommendations for the treatment and management of patients with Fabry disease on migalastat: a modified Delphi study

    Get PDF
    Objective: Fabry disease is a progressive disorder caused by deficiency of the α-galactosidase A enzyme (α-Gal A), leading to multisystemic organ damage with heterogenous clinical presentation. The addition of the oral chaperone therapy migalastat to the available treatment options for Fabry disease is not yet universally reflected in all treatment guidelines. These consensus recommendations are intended to provide guidance for the treatment and monitoring of patients with Fabry disease receiving migalastat. Methods: A modified Delphi process was conducted to determine consensus on treatment decisions and monitoring of patients with Fabry disease receiving migalastat. The multidisciplinary panel comprised 14 expert physicians across nine specialties and two patients with Fabry disease. Two rounds of Delphi surveys were completed and recommendations on the use of biomarkers, multidisciplinary monitoring, and treatment decisions were generated based on statements that reached consensus. Results: The expert panel reached consensus agreement on 49 of 54 statements, including 16 that reached consensus in round 1. Statements that reached consensus agreement are summarized in recommendations for migalastat treatment and monitoring, including baseline and follow-up assessments and frequency. All patients with Fabry disease and an amenable mutation may initiate migalastat treatment if they have evidence of Fabry-related symptoms and/or organ involvement. Treatment decisions should include holistic assessment of the patient, considering clinical symptoms and organ involvement as well as patient-reported outcomes and patient preference. The reliability of α-Gal A and globotriaosylsphingosine as pharmacodynamic response biomarkers remains unclear. Conclusion: These recommendations build on previously published guidelines to highlight the importance of holistic, multidisciplinary monitoring for patients with Fabry disease receiving migalastat, in addition to shared decision-making regarding treatments and monitoring throughout the patient journey. (Figure presented.)

    Nervous system and Fabry disease, from symptoms to diagnosis: damage evaluation and follow-up in adult patients, enzyme replacement, and support therapy

    Get PDF
    The X-linked genetic Fabry disease causes multiorgan lesions due to intracellular storage of the substrate globotriaosylceramide. Neurological involvement ranges from painful, small fiber neuropathy to cerebrovascular disorders to multifocal aggressive forms. Disease identification through proper differential diagnosis and timely assessment of organ damage should guide a careful treatment planning. Mainstay treatment, include enzyme replacement and support therapy. Neurologists have a pivotal role in early instrumental and clinical detection of organ damage. A panel of experts has developed a set of consensus recommendations to guide the approach of neurologists to Fabry disease

    Standardising clinical outcomes measures for adult clinical trials in Fabry Disease: A global Delphi Consensus

    Get PDF
    Background: Recent years have witnessed a considerable increase in clinical trials of new investigational agents for Fabry disease (FD). Several trials investigating different agents are currently in progress; however, lack of standardisation results in challenges to interpretation and comparison. To facilitate the standardisation of investigational programs, we have developed a common framework for future clinical trials in FD. Methods and findings: A broad consensus regarding clinical outcomes and ways to measure them was obtained via the Delphi methodology. 35 FD clinical experts from 4 continents, representing 3389 FD patients, participated in 3 rounds of Delphi procedure. The aim was to reach a consensus regarding clinical trial design, best treatment comparator, clinical outcomes, measurement of those clinical outcomes and inclusion and exclusion criteria. Consensus results of this initiative included: the selection of the adaptative clinical trial as the ideal study design and agalsidase beta as ideal comparator treatment due to its longstanding use in FD. Renal and cardiac outcomes, such as glomerular filtration rate, proteinuria and left ventricular mass index, were prioritised, whereas neurological outcomes including cerebrovascular and white matter lesions were dismissed as a primary or secondary outcome measure. Besides, there was a consensus regarding the importance of patient-related outcomes such as general quality of life, pain, and gastrointestinal symptoms. Also, unity about lysoGb3 and Gb3 tissue deposits as useful surrogate markers of the disease was obtained. The group recognised that cardiac T1 mapping still has potential but requires further development before its widespread introduction in clinical trials. Finally, patients with end-stage renal disease or renal transplant should be excluded unless a particular group for them is created inside the clinical trial. Conclusion: This consensus will help to shape the future of clinical trials in FD. We note that the FDA has, coincidentally, recently published draft guidelines on clinical trials in FD and welcome this contribution

    Substrate Reduction Augments the Efficacy of Enzyme Therapy in a Mouse Model of Fabry Disease

    Get PDF
    Fabry disease is an X-linked glycosphingolipid storage disorder caused by a deficiency in the activity of the lysosomal hydrolase α-galactosidase A (α-gal). This deficiency results in accumulation of the glycosphingolipid globotriaosylceramide (GL-3) in lysosomes. Endothelial cell storage of GL-3 frequently leads to kidney dysfunction, cardiac and cerebrovascular disease. The current treatment for Fabry disease is through infusions of recombinant α-gal (enzyme-replacement therapy; ERT). Although ERT can markedly reduce the lysosomal burden of GL-3 in endothelial cells, variability is seen in the clearance from several other cell types. This suggests that alternative and adjuvant therapies may be desirable. Use of glucosylceramide synthase inhibitors to abate the biosynthesis of glycosphingolipids (substrate reduction therapy, SRT) has been shown to be effective at reducing substrate levels in the related glycosphingolipidosis, Gaucher disease. Here, we show that such an inhibitor (eliglustat tartrate, Genz-112638) was effective at lowering GL-3 accumulation in a mouse model of Fabry disease. Relative efficacy of SRT and ERT at reducing GL-3 levels in Fabry mouse tissues differed with SRT being more effective in the kidney, and ERT more efficacious in the heart and liver. Combination therapy with ERT and SRT provided the most complete clearance of GL-3 from all the tissues. Furthermore, treatment normalized urine volume and uromodulin levels and significantly delayed the loss of a nociceptive response. The differential efficacies of SRT and ERT in the different tissues indicate that the combination approach is both additive and complementary suggesting the possibility of an improved therapeutic paradigm in the management of Fabry disease

    Mixed cryoglobulinemia

    Get PDF
    Mixed cryoglobulinemia (MC), type II and type III, refers to the presence of circulating cryoprecipitable immune complexes in the serum and manifests clinically by a classical triad of purpura, weakness and arthralgias. It is considered to be a rare disorder, but its true prevalence remains unknown. The disease is more common in Southern Europe than in Northern Europe or Northern America. The prevalence of 'essential' MC is reported as approximately 1:100,000 (with a female-to-male ratio 3:1), but this term is now used to refer to a minority of MC patients only. MC is characterized by variable organ involvement including skin lesions (orthostatic purpura, ulcers), chronic hepatitis, membranoproliferative glomerulonephritis, peripheral neuropathy, diffuse vasculitis, and, less frequently, interstitial lung involvement and endocrine disorders. Some patients may develop lymphatic and hepatic malignancies, usually as a late complication. MC may be associated with numerous infectious or immunological diseases. When isolated, MC may represent a distinct disease, the so-called 'essential' MC. The etiopathogenesis of MC is not completely understood. Hepatitis C virus (HCV) infection is suggested to play a causative role, with the contribution of genetic and/or environmental factors. Moreover, MC may be associated with other infectious agents or immunological disorders, such as human immunodeficiency virus (HIV) infection or primary Sjögren's syndrome. Diagnosis is based on clinical and laboratory findings. Circulating mixed cryoglobulins, low C4 levels and orthostatic skin purpura are the hallmarks of the disease. Leukocytoclastic vasculitis involving medium- and, more often, small-sized blood vessels is the typical pathological finding, easily detectable by means of skin biopsy of recent vasculitic lesions. Differential diagnoses include a wide range of systemic, infectious and neoplastic disorders, mainly autoimmune hepatitis, Sjögren's syndrome, polyarthritis, and B-cell lymphomas. The first-line treatment of MC should focus on eradication of HCV by combined interferon-ribavirin treatment. Pathogenetic treatments (immunosuppressors, corticosteroids, and/or plasmapheresis) should be tailored to each patient according to the progression and severity of the clinical manifestations. Long-term monitoring is recommended in all MC patients to assure timely diagnosis and treatment of the life-threatening complications. The overall prognosis is poorer in patients with renal disease, liver failure, lymphoproliferative disease and malignancies
    corecore