40 research outputs found

    Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains

    Full text link

    Ontogeny of central serotonergic neurons in the directly developing frog, Eleutherodactylus coqui

    Full text link
    Embryonic development of the central serotonergic neurons in the directly developing frog, Eleutherodactylus coqui , was determined by using immunocytochemistry. The majority of anuran amphibians (frogs) possess a larval stage (tadpole) that undergoes metamorphosis, a dramatic post-embryonic event, whereby the tadpole transforms into the adult phenotype. Directly developing frogs have evolved a derived life-history mode where the tadpole stage has been deleted and embryos develop directly into the adult bauplan. Embryonic development in E. coqui is classified into 15 stages (TS 1–15; 1 = oviposition / 15 = hatching). Serotonergic immunoreactivity was initially detected at TS 6 in the raphe nuclei in the developing rhombencephalon. At TS 7, immunopositive perikarya were observed in the paraventricular organ in the hypothalamus and reticular nuclei in the hindbrain. Development of the serotonergic system was steady and gradual during mid-embryogenesis. However, starting at TS 13 there was a substantial increase in the number of serotonergic neurons in the paraventricular, raphe, and reticular nuclei, a large increase in the number of varicose fibers, and a differentiation of the reticular nuclei in the hindbrain. Consequentially, E. coqui displayed a well-developed central serotonergic system prior to hatching (TS 15). In comparison, the serotonergic system in metamorphic frogs typically starts to develop earlier but the surge of development that transpires in this system occurs post-embryonically, during metamorphosis, and not in the latter stages of embryogenesis, as it does in E. coqui . Overall, the serotonergic development in E. coqui is similar to the other vertebrates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47526/1/429_2005_Article_22.pd

    The Roles of the Dystrophin-Associated Glycoprotein Complex at the Synapse

    Full text link

    Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations

    Get PDF
    Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1(-/-) animals. Pus1(-/-) mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1(-/-) mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1(-/-) mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1(-/-) mice
    corecore