50 research outputs found

    Cytokine Induced Killer cells are effective against sarcoma cancer stem cells spared by chemotherapy and target therapy

    Get PDF
    Metastatic bone and soft tissue sarcomas often relapse after chemotherapy (CHT) and molecular targeted therapy (mTT), maintaining a severe prognosis. A subset of sarcoma cancer stem cells (sCSC) is hypothesized to resist conventional drugs and sustain disease relapses. We investigated the immunotherapy activity of cytokine induced killer cells (CIK) against autologous sCSC that survived CHT and mTT. The experimental platform included two aggressive bone and soft tissue sarcoma models: osteosarcoma (OS) and undifferentiated-pleomorphic sarcoma (UPS). To visualize putative sCSC we engineered patient-derived sarcoma cultures (2 OS and 3 UPS) with a lentiviral sCSC-detector wherein the promoter of stem-gene Oct4 controls the expression of eGFP. We visualized a fraction of sCSC (mean 24.2 +/- 5.2%) and confirmed their tumorigenicity in vivo. sCSC resulted relatively resistant to both CHT and mTT in vitro. Therapeutic doses of doxorubicin significantly enriched viable eGFP(+)sCSC in both OS (2.6 fold, n = 16) and UPS (2.3 fold, n = 29) compared to untreated controls. Treatment with sorafenib (for OS) and pazopanib (for UPS) also determined enrichment (1.3 fold) of viable eGFP(+)sCSC, even if less intense than what observed after CHT. Sarcoma cells surviving CHT and mTT were efficiently killed in vitro by autologous CIK even at minimal effector/target ratios (40:1 = 82%, 1:4 = 29%, n = 13). CIK immunotherapy did not spare sCSC that were killed as efficiently as whole sarcoma cell population. The relative chemo-resistance of sCSC and sensitivity to CIK immunotherapy was confirmed in vivo. Our findings support CIK as an innovative, clinically explorable, approach to eradicate chemo-resistant sCSC implicated in tumor relapse

    Integrated Antitumor Activities of Cellular Immunotherapy with CIK Lymphocytes and Interferons against KIT/PDGFRA Wild Type GIST

    Get PDF
    : Gastrointestinal stromal tumors (GISTs) are rare, mesenchymal tumors of the gastrointestinal tract, characterized by either KIT or PDGFRA mutation in about 85% of cases. KIT/PDGFRA wild type gastrointestinal stromal tumors (wtGIST) account for the remaining 15% of GIST and represent an unmet medical need: their prevalence and potential medical vulnerabilities are not completely defined, and effective therapeutic strategies are still lacking. In this study we set a patient-derived preclinical model of wtGIST to investigate their phenotypic features, along with their susceptibility to cellular immunotherapy with cytokine-induced killer lymphocytes (CIK) and interferons (IFN). We generated 11 wtGIST primary cell lines (wtGISTc). The main CIK ligands (MIC A/B; ULBPs), along with PD-L1/2, were expressed by wtGISTc and the expression of HLA-I molecules was preserved. Patient-derived CIK were capable of intense killing in vitro against wtGISTc resistant to both imatinib and sunitinib. We found that CIK produce a high level of granzyme B, IFNα and IFNγ. CIK-conditioned supernatant was responsible for part of the observed tumoricidal effect, along with positive bystander modulatory activities enhancing the expression of PD-L1/2 and HLA-I molecules. IFNα, but not In, had direct antitumor effects on 50% (4/8) of TKI-resistant wtGISTc, positively correlated with the tumor expression of IFN receptors. wtGIST cells that survived IFNα were still sensitive to CIK immunotherapy. Our data support the exploration of CIK immunotherapy in clinical studies for TKI-resistant wtGIST, proposing reevaluation for IFNα within this challenging setting

    Post-Transplant Cyclophosphamide and Tacrolimus–Mycophenolate Mofetil Combination Prevents Graft-versus-Host Disease in Allogeneic Peripheral Blood Hematopoietic Cell Transplantation from HLA-Matched Donors

    Get PDF
    Abstract Allogeneic hematopoietic cell transplant (HCT) remains the only curative therapy for many hematologic malignancies but it is limited by high nonrelapse mortality (NRM), primarily from unpredictable control of graft-versus-host disease (GVHD). Recently, post-transplant cyclophosphamide demonstrated improved GVHD control in allogeneic bone marrow HCT. Here we explore cyclophosphamide in allogeneic peripheral blood stem cell transplantation (alloPBSCT). Patients with high-risk hematologic malignancies received alloPBSCT from HLA-matched unrelated/related donors. GVHD prophylaxis included combination post-HCT cyclophosphamide 50 mg/kg (days +3 and +4) and tacrolimus/mofetil mycophenolate (T/MMF) (day +5 forward). The primary objective was the cumulative incidence of acute and chronic GVHD. Between March 2011 and May 2015, 35 consecutive patients received the proposed regimen. MMF was stopped in all patients at day +28; the median discontinuation of tacrolimus was day +113. Acute and chronic GVHD cumulative incidences were 17% and 7%, respectively, with no grade IV GVHD events, only 2 patients requiring chronic GVHD immunosuppression control, and no deaths from GVHD. Two-year NRM, overall survival, event-free survival, and chronic GVHD event-free survival rates were 3%, 77%, 54%, and 49%, respectively. The graft-versus-tumor effect was maintained as 5 of 15 patients (33%) who received HCT with evidence of disease experienced further disease response. A post-transplant cyclophosphamide + T/MMF combination strategy effectively prevented acute and chronic GVHD after alloPBSCT from HLA-matched donors and achieved an unprecedented low NRM without losing efficacy in disease control or impaired development of the graft-versus-tumor effect. This trial is registered at clinicaltrials.gov as NCT02300571

    Voluntariado Universitario: Un Espacio para formar profesionales comprometidos con la sociedad

    Get PDF
    Voluntariado Universitario. Formar a los voluntarios para que desde una mirada integral de los derechos y a través de una trabajo en red sean promotores activos de la salud comunitariaFil: Azcurra, Ana Isabel. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Biología Celular B; Argentina.Fil: Rezzónico, María Silvina. Universidad Nacional de Córdoba. Facultad de Odontología. Asesoría Pedagógica; Argentina.Fil: Barembaum, Silvina Ruth. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra Introducción a la Física y Química Biológica B; Argentina.Fil: Scatena, María Gabriela. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra Química Biológica B; Argentina.Fil: Lehner Rosales, Elena María Paula. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Introducción a la Física y Química Biológica B; Argentina.Fil: Rubio, Silvia Elena. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Periodoncia B; Argentina.Fil: Tessio Conca, Adriana. Universidad Nacional de Córdoba. Facultad de Odontología. Asesoría Pedagógica; Argentina.Fil: Giraudo, María Belén. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Diagnóstico por Imágenes A; Argentina.Fil: Bisio, Lidia Catalina. Universidad Nacional de Córdoba. Facultad de Agronomía. Cátedra de Realidad Agrícola Ganadera; Argentina.Fil: Carpentieri, Ágata Rita. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra Química Biológica B; Argentina.Educación General (incluye capacitación, pedagogía y didáctica
    corecore