5 research outputs found

    Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites

    Get PDF
    In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations revealed interesting luminescence features related to carbon impurities and inherent host defects in zinc oxide. Because of the wide bandgap of zinc oxide and its intrinsic defects, the hybrid network absorbs light in the UV and visible regions, however, this broadband photoabsorption behavior extends to the infrared (IR) region due to the dependence of the optical properties of ZnO architectures upon size and shape of constituent nanostructures and their doping by carbon impurities. Such a phenomenon of broadband photoabsorption ranging from UV to IR for zinc oxide based hybrid materials is novel. Additionally, the fabricated network exhibits strong visible light scattering behavior. The developed Aerographite/nanocrystalline ZnO hybrid network materials, equipped with broadband photoabsorption and strong light scattering, are very promising candidates for optoelectronic technologies

    Copper Doped Zinc Oxide Micro- And Nanostructures For Room-Temperature Sensorial Applications

    No full text
    Detection of hydrogen gas is important for safety reasons. To obtain improved hydrogen sensing performances for miniaturized sensors, copper doping in zinc oxide micro- and nanostructures were investigated. Samples were grown by hydrothermal technique at relatively low temperature and studied by X-ray diffraction, micro-Raman, SEM and sensorial techniques. It is found evidence on the improvement of the sensorial properties due to copper-doping in zinc oxide rods-like structures. © 2013 IEEE

    Differential Diagnosis of Fungal Pneumonias vs. Tuberculosis in AIDS Patients by Using Two New Molecular Methods.

    Get PDF
    Opportunistic fungal pneumonias (OFP) are the main cause of death in AIDS patients worldwide. Diagnosis of these infections is often late as tuberculosis (TB) is frequently the first suspicion. In addition, diagnostic tools have limitations and are unavailable in disadvantaged regions. To perform the differential diagnosis of the main fungi causing OFP in AIDS patients (Histoplasma capsulatum, Cryptococcus neoformans/C. gattii and Pneumocystis jirovecii) vs. the Mycobacterium tuberculosis complex (MTBC), two new assays were developed: (i) a multiplex real-time PCR (MRT-PCR) and (ii) a simple and cost-effective method based on real-time PCR and the analysis of melting curves after amplification (MC-PCR). Both of the techniques were optimized and standardized "in vitro", showing a suitable reproducibility (CV ranged between 1.84 and 3.81% and 1.41 and 4.83%, respectively), a 100% specificity and detection limits between 20 and 2 fg of genomic DNA per 20 µL of reaction. A validation study was performed by retrospectively using 42 clinical samples from 37 patients with proven fungal infection or TB, and 33 controls. The overall sensitivity for the MRT-PCR assay and the MC-PCR assay was 88% and 90.4%, respectively. Both techniques were fast, sensitive and reproducible, allowing for the detection of these pathogens and the performance of a differential diagnosis.This work was supported by research projects PI14CIII/00045 and PI17CIII/00033 from Spanish Fondo de Investigaciones Sanitarias of the Instituto de Salud Carlos III. L.B-M. has a contract supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, cofinanced by the European Development Regional Fund (EDRF) “A Way to Achieve Europe” and the Spanish Network for the Research in Infectious Diseases (REIPI; RD16/CIII/0004/0003). A.C.M-A had a short fellowship from Fundación Carolina (call 2017–2018).S

    Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites

    No full text
    In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations revealed interesting luminescence features related to carbon impurities and inherent host defects in zinc oxide. Because of the wide bandgap of zinc oxide and its intrinsic defects, the hybrid network absorbs light in the UV and visible regions, however, this broadband photoabsorption behavior extends to the infrared (IR) region due to the dependence of the optical properties of ZnO architectures upon size and shape of constituent nanostructures and their doping by carbon impurities. Such a phenomenon of broadband photoabsorption ranging from UV to IR for zinc oxide based hybrid materials is novel. Additionally, the fabricated network exhibits strong visible light scattering behavior. The developed Aerographite/nanocrystalline ZnO hybrid network materials, equipped with broadband photoabsorption and strong light scattering, are very promising candidates for optoelectronic technologies
    corecore