12 research outputs found

    Novel GPU Approach In Predicting The Directional Trend Of The S&P 500

    Get PDF
    Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500

    Wide-Bandwidth CFOA with High CMRR Performance

    Get PDF
    ​In this paper the authors analyze the conventional current-feedback operational amplifier (CFOA) in terms of common-mode-rejection ratio (CMRR) performance, and having identified the mechanism primarily responsible for the CMRR, they propose two new architecture CFOAs. These new CFOAs are further developed, and modified to provide improved bandwidth, AC gain accuracy and high CMRR performance. The key features of the two proposed new CFOAs are the designs of the internal voltage followers which have two separate biasing currents with a similar dynamic architecture to that of the conventional CFOA. The magnitude of one bias current determines the value of the maximum CMRR, and the second can be used to maximize bandwidth

    Analysis and design of a high precision- high output impedance tissue current driver for medical applications

    Get PDF
    This paper describes the design and operation of a high output impedance tissue current driver circuit, for use in medical electronics, such as Electrical Impedance Tomography (EIT). This novel architecture was designed for implementation in bipolar technology, to meet the specifications for EIT, namely operating frequency range 10 kHz–1 MHz with a target output resistance of 16 MW. Simulation results are presented, showing that the current source more than met the minimum specification for EIT

    Provenance and structure of the Yancannia Formation, southern Thomson Orogen: implications for the tectono-stratigraphic evolution of the Cambro-Ordovician western Tasmanides

    No full text
    © 2018 Geological Society of Australia The upper Cambrian Yancannia Formation is a small and isolated basement exposure situated in the southern Thomson Orogen, northwestern New South Wales. Understanding the geology of the Yancannia Formation is important, as it offers a rare glimpse of the composition and structure of the mostly covered basement rocks of the southern Thomson Orogen. It consists of deformed fine-grained, lithic-rich, turbiditic metasediments, suggesting deposition in a proximal, low-energy deep-marine environment. A 497 ± 13 Ma U–Pb detrital zircon date provides its maximum depositional age, the same as previously published for a tuff horizon in a correlative unit. Analysis of sedimentological, geochronological and geophysical data confirms the Yancannia Formation belongs to the Warratta Group. The Warratta Group exhibits many similarities to the Teltawongee Group in the adjacent Delamerian Orogen, including similar provenance, sedimentology and deep-water turbiditic depositional environment. Additionally, there is no sedimentological evidence for deposition of the Warratta Group following the ca 500 Ma Delamerian Orogeny, which suggests that the Warratta Group is syn-Delamerian. However, no geochronological or structural evidence for Delamerian orogenesis was observed in the Warratta Group, suggesting that the group was either unaffected by Delamerian orogenesis, or that no conclusive record remains. The provenance signature of the Warratta Group also bears strong similarities with the upper Cambrian Stawell Zone Saint Arnaud Group in the western Lachlan Orogen. Units east of Yancannia have similar provenance signatures to the Lower Ordovician Girilambone Group of the Lachlan Orogen, suggesting equivalents exist in the southern Thomson Orogen. These are likely to be the Thomson beds, deposited in a deep-marine setting outboard of the Delamerian continental margin. Structural analysis from a ~10 km, semi-continuous, across-strike section indicates a major, kilometre-scale, upright, shallow northwest-trending, doubly plunging anticline dominates the Yancannia region. This D1structure was associated with tight-to-isoclinal folding, penetrative cleavage and abundant quartz veining of probable Benambran age. Later dextral transpressional deformation (D2) produced a sporadic, weak cleavage and dextral faulting, possibly of Bindian age. Major south-directed thrusting (D3) on the adjacent Olepoloko Fault occurred in the early Carboniferous and appears to pre-date a later deformation event (D4), which was associated with kink folding
    corecore