658 research outputs found

    Controllable linear π\pi-phase modulation in a thermal atom vapor without diffraction or absorption

    Get PDF
    A scheme is proposed to achieve substantial controllable phase modulation for a probe field propagating through a thermal atomic vapor in double-Λ\Lambda configuration. The phase modulation is based on the linear susceptibility of the probe field, paraxial diffraction is eliminated by exploiting the thermal motion of atoms, and residual absorption is compensated via an incoherent pump field. As a result, a strong controllable uniform phase modulation without paraxial diffraction is achieved essentially independent of the spatial profile or the intensity of the probe field. This phase shift can be controlled via the intensities of the control or the incoherent pump fields. A possible proof-of-principle experiment in alkali atoms is discussed.Comment: 10 pages, 7 figure

    Nonlocal nonlinear response of thermal Rydberg atoms and modulational instability in absorptive nonlinear media

    Full text link
    Nonlinear and nonlocal effects are discussed in the interaction of laser fields with thermal Rydberg atoms in electromagnetically induced transparency configuration. We show that under the crucial approximation that the time variation in the dipole-dipole interactions due to atomic motions can be neglected in an ensemble average, an analytical form can be obtained for the nonlocal nonlinear atomic response of the thermal medium, and study it for different parameter cases. We further propose a generalized model to describe the modulational instability (MI) in absorptive nonlinear media, in order to understand the propagation dynamics in the thermal Rydberg medium. Interestingly, this model predicts that at short propagation distances, each wave component exhibits the MI effect in absorptive nonlinear media, unlike in the purely dispersive case.Comment: 15 pages, 11 figure

    Spacecraft Informatics

    Get PDF

    Coherent control and manipulation of classical or quantum light via nonlocal effects

    Get PDF
    The thesis is devoted to the theoretical studies of coherent control and manipulation of classical or quantum light via nonlocal effects. At the classical level, controllable light propagation dynamics in the paraxial regime is investigated. The specific type of nonlocal linear effects induced in thermal atomic vapor is explored to achieve diffraction-less and lossless propagation, uniform phase modulation, and frequency conversion with diffractionless image duplication for laser beams with arbitrarily encoded spatial profiles. Next, the study is extended to investigate propagation dynamics in the presence of nonlocal nonlinear effects generated in thermal interacting Rydberg atoms, which mainly reveals simultaneous competition between the nonlocal nonlinear absorption and the modulational instability for each wave component. Moreover, parity-time (PT) sym- metric dynamics in cold Rydberg atoms are exploited, and it is shown that a phase transition from unbroken to broken PT symmetry can be induced by nonlocal nonlinear effects. At the quantum level, it is further proposed to test the quantum nonlocality of single x-ray photons in a system where very weak x-ray pulses interact with 57 Fe nuclei in a thin cavity, such that a Bell-like inequality in the single-photon version is violated. All these proposals are feasible in current experimental settings
    • …
    corecore