24 research outputs found

    Exploring challenges and solutions towards polymer-based acoustofluidics

    No full text

    Constant-Power versus Constant-Voltage Actuation in Frequency Sweeps for Acoustofluidic Applications

    Get PDF
    Supplying a piezoelectric transducer with constant voltage or constant power during a frequency sweep can lead to different results in the determination of the acoustofluidic resonance frequencies, which are observed when studying the acoustophoretic displacements and velocities of particles suspended in a liquid-filled microchannel. In this work, three cases are considered: (1) Constant input voltage into the power amplifier, (2) constant voltage across the piezoelectric transducer, and (3) constant average power dissipation in the transducer. For each case, the measured and the simulated responses are compared, and good agreement is obtained. It is shown that Case 1, the simplest and most frequently used approach, is largely affected by the impedance of the used amplifier and wiring, so it is therefore not suitable for a reproducible characterization of the intrinsic properties of the acoustofluidic device. Case 2 strongly favors resonances at frequencies yielding the lowest impedance of the piezoelectric transducer, so small details in the acoustic response at frequencies far from the transducer resonance can easily be missed. Case 3 provides the most reliable approach, revealing both the resonant frequency, where the power-efficiency is the highest, as well as other secondary resonances across the spectrum

    Acoustophoresis in polymer-based microfluidic devices:Modeling and experimental validation

    No full text
    A finite-element model is presented for numerical simulation in three dimensions of acoustophoresis of suspended microparticles in a microchannel embedded in a polymer chip and driven by an attached piezoelectric transducer at MHz frequencies. In accordance with the recently introduced principle of whole-system ultrasound resonances, an optimal resonance mode is identified that is related to an acoustic resonance of the combined transducer-chip-channel system and not to the conventional pressure half-wave resonance of the microchannel. The acoustophoretic action in the microchannel is of comparable quality and strength to conventional silicon-glass or pure glass devices. The numerical predictions are validated by acoustic focusing experiments on 5-um-diameter polystyrene particles suspended inside a microchannel, which was milled into a PMMA-chip. The system was driven anti-symmetrically by a piezoelectric transducer, driven by a 30-V peak-to-peak AC-voltage in the range from 0.5 to 2.5 MHz, leading to acoustic energy densities of 13 J/m^3 and particle focusing times of 6.6 s.Comment: 12 pages, 7 pdf figures, pdf-late

    Acoustic Particle Focusing in Polymer Microfluidic Devices

    No full text

    Determination of the Complex-Valued Elastic Moduli of Polymers by Electrical-Impedance Spectroscopy for Ultrasound Applications

    No full text
    A method is presented for the determination of complex-valued compression and shear elastic moduli of polymers for ultrasound applications. The resulting values, which are scarcely reported in the literature, are found with uncertainties typically around 1% (real part) and 6% (imaginary part). The method involves a setup consisting of a cm-radius, mm-thick polymer ring glued concentrically to a disk-shaped piezoelectric transducer. The ultrasound electrical-impedance spectrum of the transducer is computed numerically and fitted to measured values as an inverse problem in a wide frequency range, typically from 500 Hz to 5 MHz, both on and off resonance. The method is validated experimentally by ultrasonic through transmission around 1.9 MHz. The method is low cost, not limited to specific geometries and crystal symmetries, and, given the developed software, easy to execute. The method has no obvious frequency limitations before severe attenuation sets in above 100 MHz

    Impact of Injection Molding Parameters on Material Acoustic Parameters

    No full text
    Understanding the relationship between injection molding parameters and the acoustic properties of polymers is crucial for optimizing the design and performance of acoustic-based polymer devices. In this work, the impact of injection molding parameters, such as the injection velocity and packing pressure, on the acoustic parameters of polymers, namely the elastic moduli, is studied. The measurements lead to calculating material parameters, such as the Young’s modulus and Poisson’s ratio, that can be swiftly measured and determined thanks to this method. Polymethyl methacrylate (PMMA) was used as the molding material, and using PMMA LG IG 840, the parts were simulated and injection molded, applying a ‘design of experiment’ (DOE) statistical method. The results indicated a correlation between the injection molding process parameters and the acoustic characteristics, such as the elastic moduli, and a specifically decreasing trend with increase in the injection velocity. Notably, a relative decrease in the Young’s modulus by (Formula presented.) was observed when increasing the packing pressure from (Formula presented.) to (Formula presented.). Similarly, a decrease in the Poisson’s ratio of (Formula presented.) was observed when the injection velocity was increased from (Formula presented.) to (Formula presented.). This method can be used to fine-tune the material properties according to the needs of a given application and to facilitate the characterization of different polymer acoustic properties essential for acoustic-based polymer devices.</p

    Vertical sleeve gastrectomy triggers fast β-cell recovery upon overt diabetes

    Get PDF
    While the effectiveness of bariatric surgery in restoring β-cell function has been described in type-2 diabetes (T2D) patients and animal models for years, the mechanistic underpinnings are largely unknown. The possibility of vertical sleeve gastrectomy (VSG) to rescue a clinically-relevant, late-stage T2D condition and to promote β-cell recovery has not been investigated on a single-cell level. Nevertheless, characterization of the heterogeneity and functional states of β-cells after VSG is a fundamental step to understand mechanisms of glycaemic recovery and to ultimately develop alternative, less-invasive therapies. Here, we report that VSG was superior to calorie restriction in late-stage T2D and rapidly restored normoglycaemia in morbidly obese and overt diabetic db/db mice. Single-cell profiling of islets of Langerhans showed that VSG induced distinct, intrinsic changes in the β-cell transcriptome, but not in that of ι-, δ-, and PP-cells. VSG triggered fast β-cell redifferentiation and functional improvement within only two weeks of intervention, which is not seen upon calorie restriction. Furthermore, VSG expanded β-cell area by means of redifferentiation and by creating a proliferation competent β-cell state. Collectively, our study reveals the superiority of VSG in the remission of far-progressed T2D and presents paths of β-cell regeneration and molecular pathways underlying the glycaemic benefits of VSG

    Inferring population dynamics from single-cell RNA-sequencing time series data

    No full text
    Recent single-cell RNA-sequencing studies have suggested that cells follow continuous transcriptomic trajectories in an asynchronous fashion during development. However, observations of cell flux along trajectories are confounded with population size effects in snapshot experiments and are therefore hard to interpret. In particular, changes in proliferation and death rates can be mistaken for cell flux. Here we present pseudodynamics, a mathematical framework that reconciles population dynamics with the concepts underlying developmental trajectories inferred from time-series single-cell data. Pseudodynamics models population distribution shifts across trajectories to quantify selection pressure, population expansion, and developmental potentials. Applying this model to time-resolved single-cell RNA-sequencing of T-cell and pancreatic beta cell maturation, we characterize proliferation and apoptosis rates and identify key developmental checkpoints, data inaccessible to existing approaches
    corecore