189 research outputs found

    Entering Academic Psychiatry: A Resident\u27s Perspective

    Get PDF
    University-based psychiatry residency programs encourage the pursuit of academic careers, both on admission, by favoring applicants with evidence of a commitment to investigation, and after residency training, by selecting as faculty residents who have demonstrated academic and research productivity. While attempting to achieve multiple goals, some residents may be discouraged to pursue an academic career as a result of marked conflict between the clinical and academic components of training. The substantial differences in priorities among psychiatry residents ought to be explored early in residency training by devoting seminars to career planning and by facilitating the pursuit of academic activities under a preceptorship program. Furthermore, the option for research track residency programs should be available to those with a strong commitment to academic psychiatry

    Authors' Response to Hockey and Reidak

    Get PDF

    Pharmacogenomics of neuroimmune interactions in human psychiatric disorders

    Get PDF
    There is bidirectional communication between the brain and the immune system. Overproduction of interleukin-1β (IL-1β) leads to systemic inflammatory response syndrome (SIRS). The crucial role of IL-1β in inflammation has been highlighted by studies p

    A latent genetic subtype of major depression identified by whole-exome genotyping data in a Mexican-American cohort

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.Identifying data-driven subtypes of major depressive disorder (MDD) is an important topic of psychiatric research. Currently, MDD subtypes are based on clinically defined depression symptom patterns. Although a few data-driven attempts have been made to identify more homogenous subgroups within MDD, other studies have not focused on using human genetic data for MDD subtyping. Here we used a computational strategy to identify MDD subtypes based on single-nucleotide polymorphism genotyping data from MDD cases and controls using Hamming distance and cluster analysis. We examined a cohort of Mexican-American participants from Los Angeles, including MDD patients (n=203) and healthy controls (n=196). The results in cluster trees indicate that a significant latent subtype exists in the Mexican-American MDD group. The individuals in this hidden subtype have increased common genetic substrates related to major depression and they also have more anxiety and less middle insomnia, depersonalization and derealisation, and paranoid symptoms. Advances in this line of research to validate this strategy in other patient groups of different ethnicities will have the potential to eventually be translated to clinical practice, with the tantalising possibility that in the future it may be possible to refine MDD diagnosis based on genetic data

    Saúde mental na próxima década

    Get PDF
    nul

    Chronic fluoxetine treatment increases daytime melatonin synthesis in the rodent

    Get PDF
    Circadian rhythm disturbances can occur as part of the clinical symptoms of major depressive disorder and have been found to resolve with antidepressant therapy. The pineal gland is relevant to circadian rhythms as it secretes the hormone melatonin following activation of the cyclic adenosine monophosphate (cAMP) signaling cascade and of arylalkylamine N-acetyltransferase (AA-NAT), the rate-limiting enzyme for its synthesis. Cyclic AMP is synthesized by adenylate cyclases (AC) and degraded by phosphodiesterases (PDEs). Little is known about the contribution of the PDE system to antidepressant-induced alterations in pineal cAMP signaling and melatonin synthesis. In the present study we used enzyme immunoassay to measure plasma melatonin levels and pineal cAMP levels and as well as quantitative real-time polymerase chain reaction to measure pineal expression of PDE, AC, and AA-NAT genes in rats chronically treated with the prototypic antidepressant fluoxetine. We found elevated melatonin synthesis with increased pineal AA-NAT gene expression and daytime plasma melatonin levels and downregulated cAMP signaling with increased PDE and unchanged AC pineal gene expression, and decreased content of pineal cAMP. We conclude that chronic fluoxetine treatment increases daytime plasma melatonin and pineal AA-NAT gene expression despite downregulated pineal cAMP signaling in the rodent

    Is increased antidepressant exposure a contributory factor to the obesity pandemic?

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Major depressive disorder (MDD) and obesity are both common heterogeneous disorders with complex aetiology, with a major impact on public health. Antidepressant prescribing has risen nearly 400% since 1988, according to data from the Centers for Disease Control and Prevention (CDC). In parallel, adult obesity rates have doubled since 1980, from 15 to 30 percent, while childhood obesity rates have more than tripled. Rising obesity rates have significant health consequences, contributing to increased rates of more than thirty serious diseases. Despite the concomitant rise of antidepressant use and of the obesity rates in Western societies, the association between the two, as well as the mechanisms underlying antidepressant-induced weight gain, remain under explored. In this review, we highlight the complex relationship between antidepressant use, MDD and weight gain. Clinical findings have suggested that obesity may increase the risk of developing MDD, and vice versa. Hypothalamic–pituitary–adrenal (HPA) axis activation occurs in the state of stress; concurrently, the HPA axis is also dysregulated in obesity and metabolic syndrome, making it the most well-understood shared common pathophysiological pathway with MDD. Numerous studies have investigated the effects of different classes of antidepressants on body weight. Previous clinical studies suggest that the tricyclics amitriptyline, nortriptyline and imipramine, and the serotonin norepinephrine reuptake inhibitor mirtazapine are associated with weight gain. Despite the fact that selective serotonin reuptake inhibitor (SSRI) use has been associated with weight loss during acute treatment, a number of studies have shown that SSRIs may be associated with long-term risk of weight gain; however, because of high variability and multiple confounds in clinical studies, the long-term effect of SSRI treatment and SSRI exposure on body weight remains unclear. A recently developed animal paradigm shows that the combination of stress and antidepressants followed by long-term high-fat diet results, long after discontinuation of antidepressant treatment, in markedly increased weight, in excess of what is caused by high-fat diet alone. On the basis of existing epidemiological, clinical and preclinical data, we have generated the testable hypothesis that escalatin

    Is increased antidepressant exposure a contributory factor to the obesity pandemic?

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Major depressive disorder (MDD) and obesity are both common heterogeneous disorders with complex aetiology, with a major impact on public health. Antidepressant prescribing has risen nearly 400% since 1988, according to data from the Centers for Disease Control and Prevention (CDC). In parallel, adult obesity rates have doubled since 1980, from 15 to 30 percent, while childhood obesity rates have more than tripled. Rising obesity rates have significant health consequences, contributing to increased rates of more than thirty serious diseases. Despite the concomitant rise of antidepressant use and of the obesity rates in Western societies, the association between the two, as well as the mechanisms underlying antidepressant-induced weight gain, remain under explored. In this review, we highlight the complex relationship between antidepressant use, MDD and weight gain. Clinical findings have suggested that obesity may increase the risk of developing MDD, and vice versa. Hypothalamic–pituitary–adrenal (HPA) axis activation occurs in the state of stress; concurrently, the HPA axis is also dysregulated in obesity and metabolic syndrome, making it the most well-understood shared common pathophysiological pathway with MDD. Numerous studies have investigated the effects of different classes of antidepressants on body weight. Previous clinical studies suggest that the tricyclics amitriptyline, nortriptyline and imipramine, and the serotonin norepinephrine reuptake inhibitor mirtazapine are associated with weight gain. Despite the fact that selective serotonin reuptake inhibitor (SSRI) use has been associated with weight loss during acute treatment, a number of studies have shown that SSRIs may be associated with long-term risk of weight gain; however, because of high variability and multiple confounds in clinical studies, the long-term effect of SSRI treatment and SSRI exposure on body weight remains unclear. A recently developed animal paradigm shows that the combination of stress and antidepressants followed by long-term high-fat diet results, long after discontinuation of antidepressant treatment, in markedly increased weight, in excess of what is caused by high-fat diet alone. On the basis of existing epidemiological, clinical and preclinical data, we have generated the testable hypothesis that escalatin

    Persistent LHPA Activation in German Individuals Raised in an Overprotective Parental Behavior

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Parental upbringing may affect their offspring’s mental state across the entire lifespan. Overprotective parental child-rearing style may increase the disease burden in the offspring. Furthermore, this child-rearing style may also play a pathogenetic role by transmitting trauma- and stressor-related disorders (TSRD) across generations. Studies with animals have demonstrated that the mother’s immediate and expansive protection of the newborn decreases the limbic-hypothalamic-pituitary-adrenal (LHPA) axis activity in the offspring. However, few studies have investigated how stress impact humans raised in an overprotective manner. In a cross-sectional study with 40 healthy students recalling their overprotective upbringing, we show an increase in the dehydroepiandrostendione (DHEA) concentration and a reduction in the cortisol/DHEA-ratio in hair. Additionally, this child rearing style was associated with heightened indications of mental burden, depressiveness, and sense of coherence. Our results provide insight into the roots and consequences of psychological trauma across several generations. Further investigations focusing particularly on multigenerational transmission in extremely burdened families will augment our results
    corecore