7 research outputs found

    Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orentation and growth with CO2 enrichment in the C4 species Paspalum dilatatum

    Get PDF
    Whole-plant morphology, leaf structure and composition were studied together with the effects of light orientation on the dorso-ventral regulation of photosynthesis and stomatal conductance in Paspalum dilatatum cv. Raki plants grown for 6 wk at either 350 or 700 µl l¿1 CO2. Plant biomass was doubled as a result of growth at high CO2 and the shoot:root ratio was decreased. Stomatal density was increased in the leaves of the high CO2-grown plants, which had greater numbers of smaller stomata and more epidermal cells on the abaxial surface. An asymmetric surface-specific regulation of photosynthesis and stomatal conductance was observed with respect to light orientation. This was not caused by dorso-ventral variations in leaf structure, the distribution of phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) proteins or light absorptance, transmittance or reflectance. Adaxial/abaxial specification in the regulation of photosynthesis results from differential sensitivity of stomatal opening to light orientation and fixed gradients of enzyme activation across the leaf
    corecore