282 research outputs found

    Phase Transition in a Stochastic Forest Fire Model and Effects of the Definition of Neighbourhood

    Full text link
    We present results on a stochastic forest fire model, where the influence of the neighbour trees is treated in a more realistic way than usual and the definition of neighbourhood can be tuned by an additional parameter. This model exhibits a surprisingly sharp phase transition which can be shifted by redefinition of neighbourhood. The results can also be interpreted in terms of disease-spreading and are quite unsettling from the epidemologist's point of view, since variation of one crucial parameter only by a few percent can result in the change from endemic to epidemic behaviour.Comment: 23 pages, 13 figure

    Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry

    Get PDF
    Within the “Compartmentalised Smart Factory” approach of the ONE-FLOW project the implementation of different catalysts in “compartments” provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd-catalysts that are ready to be used in combination with biocatalysts for catalytic cascade syntheses of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki-Miyaura cross coupling reactions, which is the key step in the syntheses of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce-Sn-Pd-oxides with the molecular formula Ce0.99-xSnxPd0.01O2-(x= 0-0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki-Miyaura cross coupling reactions in batch as well as in continuous flow employing the so-called “Plug & Play reactor”. Finally, we demonstrate the use of these particles as the sole emulsifier of oil + water emulsions for a range of oils

    Self-consistent modelling of Mercury’s surface composition and exosphere by solar wind sputtering

    Get PDF
    A Monte-Carlo model of exospheres was extended by treating the solar wind ion induced sputtering process, quantitatively in a self-consistent way starting with the actual release of particles from the mineral surface of Mercury. Mercury is a body without a significant atmosphere, thus, the surface is effected by different processes that are mainly related to the radiation and plasma environment of the Sun and to micrometeorites, which are delivered to Mercury’s surface. In such a case it can be assumed that the composition of Mercury’s thin collisionless atmosphere, the exosphere, is related to the composition of the planetary crustal materials. If so, then inferences regarding the bulk chemistry of the planet can be made from a study of atoms and molecules in the exosphere after they are released from the mineral surface by a variety of release processes. One difficult challenge is the identification of the main source of some elements like H, He, Na or K. Generally it is believed that H and He come primarily from the solar wind, while Na and K originate from volatilized materials partitioned between Mercury’s crust and impacts from meteorites. Besides the before mentioned elements corresponding to spectroscopic observations and experiments with soil analogues, other elements such as O, Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Fe, Ni, Zn, OH should also be related with Mercury’s surface soils (Wurz et al., 2010, and references therein). Based on available observational data and literature data we established a global model for the surface mineralogy of Mercury and from that derived the average elemental composition of the surface. Compositional data analysis has been employed for Mercury’s surface minerals recently by (Sprague et al., 2009). In these cases the applied method was based on simple correlation methods, which do not exploit the full potential of the available data. In addition, the closed nature of compositional data, i.e., the assumption that component concentrations have to sum up to 100% in an analysis, bears important implications for the statistical analysis of compositional data, which do not seem to have been sufficiently appreciated until now. To investigate the default of the classical additive analysis method our research group applied recently a more realistic multiplicative method (Aitchison, 1986) based on the Euclidean space geometry of the simplex (see the chapter Elements of simplicial linear algebra and geometry). Our recent results presented in detail in Wurz et al., (2010) for Mercury will be discussed. This model serves as a tool to estimate densities of species in the exosphere depending on the release mechanism and the associated physical parameters quantitatively describing the particle release from the surface

    On the Possibility of Measuring the Gravitomagnetic Clock Effect in an Earth Space-Based Experiment

    Full text link
    In this paper the effect of the post-Newtonian gravitomagnetic force on the mean longitudes ll of a pair of counter-rotating Earth artificial satellites following almost identical circular equatorial orbits is investigated. The possibility of measuring it is examined. The observable is the difference of the times required to ll in passing from 0 to 2π\pi for both senses of motion. Such gravitomagnetic time shift, which is independent of the orbital parameters of the satellites, amounts to 5×107\times 10^{-7} s for Earth; it is cumulative and should be measured after a sufficiently high number of revolutions. The major limiting factors are the unavoidable imperfect cancellation of the Keplerian periods, which yields a constraint of 102^{-2} cm in knowing the difference between the semimajor axes aa of the satellites, and the difference II of the inclinations ii of the orbital planes which, for i0.01i\sim 0.01^\circ, should be less than 0.0060.006^\circ. A pair of spacecrafts endowed with a sophisticated intersatellite tracking apparatus and drag-free control down to 109^{-9} cm s2^{-2} Hz1/2^{-{1/2}} level might allow to meet the stringent requirements posed by such a mission.Comment: LaTex2e, 22 pages, no tables, 1 figure, 38 references. Final version accepted for publication in Classical and Quantum Gravit

    Observation of Fragile-to-Strong Dynamic Crossover in Protein Hydration Water

    Full text link
    At low temperatures proteins exist in a glassy state, a state which has no conformational flexibility and shows no biological functions. In a hydrated protein, at and above 220 K, this flexibility is restored and the protein is able to sample more conformational sub-states, thus becomes biologically functional. This 'dynamical' transition of protein is believed to be triggered by its strong coupling with the hydration water, which also shows a similar dynamic transition. Here we demonstrate experimentally that this sudden switch in dynamic behavior of the hydration water on lysozyme occurs precisely at 220 K and can be described as a Fragile-to-Strong dynamic crossover (FSC). At FSC, the structure of hydration water makes a transition from predominantly high-density (more fluid state) to low-density (less fluid state) forms derived from existence of the second critical point at an elevated pressure.Comment: 6 pages (Latex), 4 figures (Postscript

    The Hydrogen Exospheric Density Profile Measured with ASPERA-3/NPD

    Get PDF
    We have evaluated the Lyman-α limb emission from the exospheric hydrogen of Mars measured by the neutral particle detector of the ASPERA-3 instrument on Mars Express in 2004 at low solar activity (solar activity index = 42, F10.7=100). We derive estimates for the hydrogen exobase density, n H = 1010 m−3, and for the apparent temperature, T > 600 K. We conclude that the limb emission measurement is dominated by a hydrogen component that is considerably hotter than the bulk temperature at the exobase. The derived values for the exosphere density and temperature are compared with similar measurements done by the Mariner space probes in the 1969. The values found with Mars Express and Mariner data are brought in a broader context of exosphere models including the possibility of having two hydrogen components in the Martian exosphere. The present observation of the Martian hydrogen exosphere is the first one at high altitudes during low solar activity, and shows that for low solar activity exospheric densities are not higher than for high solar activit

    The twin paradox and Mach's principle

    Full text link
    The problem of absolute motion in the context of the twin paradox is discussed. It is shown that the various versions of the clock paradox feature some aspects which Mach might have been appreciated. However, the ultimate cause of the behavior of the clocks must be attributed to the autonomous status of spacetime, thereby proving the relational program advocated by Mach as impracticable.Comment: Latex2e, 11 pages, 6 figures, 33 references, no tables. Accepted for publication in The European Physical Journal PLUS (EPJ PLUS
    corecore