2,318 research outputs found
On the local nature and scaling of chaos in weakly nonlinear disordered chains
The dynamics of a disordered nonlinear chain can be either regular or chaotic
with a certain probability. The chaotic behavior is often associated with the
destruction of Anderson localization by the nonlinearity. In the presentwork it
is argued that at weak nonlinearity chaos is nucleated locally on rare resonant
segments of the chain. Based on this picture, the probability of chaos is
evaluated analytically. The same probability is also evaluated by direct
numerical sampling of disorder realizations and quantitative agreement between
the two results is found
Ray model and ray-wave correspondence in coupled optical microdisks
We introduce a ray model for coupled optical microdisks, in which we select
coupling-efficient rays among the splitting rays. We investigate the resulting
phase-space structure and report island structures arising from the
ray-coupling between the two microdisks. We find the microdisks's refractive
index to influence the phase-space structure and calculate the stability and
decay rates of the islands. Turning to ray-wave correspondence, we find many
resonances to be directly related to the presence of these islands. We study
the relation between the (ray-picture originating) island structures and the
(wave-picture originating) spectral properties of resonances, especially the
leakiness of the resonances which is represented as the imaginary part of the
complex wave vector.Comment: 9 pages, 8 figure
When can Fokker-Planck Equation describe anomalous or chaotic transport?
The Fokker-Planck Equation, applied to transport processes in fusion plasmas,
can model several anomalous features, including uphill transport, scaling of
confinement time with system size, and convective propagation of externally
induced perturbations. It can be justified for generic particle transport
provided that there is enough randomness in the Hamiltonian describing the
dynamics. Then, except for 1 degree-of-freedom, the two transport coefficients
are largely independent. Depending on the statistics of interest, the same
dynamical system may be found diffusive or dominated by its L\'{e}vy flights.Comment: 4 pages. Accepted in Physical Review Letters. V2: only some minor
change
Spin of ground state baryons
We calculate the quark spin contribution to the total angular momentum of
flavor octet and flavor decuplet ground state baryons using a spin-flavor
symmetry based parametrization method of quantum chromodynamics. We find that
third order SU(6) symmetry breaking three-quark operators are necessary to
explain the experimental result Sigma_1=0.32(10). For spin 3/2 decuplet baryons
we predict that the quark spin contribution is Sigma_3=3.93(22), i.e.
considerably larger than their total angular momentum.Comment: 8 page
Coherent acceleration of material wavepackets in modulated optical fields
We study the quantum dynamics of a material wavepacket bouncing off a
modulated atomic mirror in the presence of a gravitational field. We find the
occurrence of coherent accelerated dynamics for atoms beyond the familiar
regime of dynamical localization. The acceleration takes place for certain
initial phase space data and within specific windows of modulation strengths.
The realization of the proposed acceleration scheme is within the range of
present day experimental possibilities
Web-assisted tunneling in the kicked harmonic oscillator
We show that heating of harmonically trapped ions by periodic delta kicks is
dramatically enhanced at isolated values of the Lamb-Dicke parameter. At these
values, quasienergy eigenstates localized on island structures undergo avoided
crossings with extended web-states.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. Let
Harmonic Generation from Laser-Irradiated Clusters
The harmonic emission from cluster nanoplasmas subject to short, intense
infrared laser pulses is analyzed by means of particle-in-cell simulations. A
pronounced resonant enhancement of the low-order harmonic yields is found when
the Mie plasma frequency of the ionizing and expanding cluster resonates with
the respective harmonic frequency. We show that a strong, nonlinear resonant
coupling of the cluster electrons with the laser field inhibits coherent
electron motion, suppressing the emitted radiation and restricting the spectrum
to only low-order harmonics. A pump-probe scheme is suggested to monitor the
ionization dynamics of the expanding clusters.Comment: 4 pages, ReVTeX
Crystal structure of LaTiO_3.41 under pressure
The crystal structure of the layered, perovskite-related LaTiO_3.41
(La_5Ti_5O_{17+\delta}) has been studied by synchrotron powder x-ray
diffraction under hydrostatic pressure up to 27 GPa (T = 295 K). The
ambient-pressure phase was found to remain stable up to 18 GPa. A sluggish, but
reversible phase transition occurs in the range 18--24 GPa. The structural
changes of the low-pressure phase are characterized by a pronounced anisotropy
in the axis compressibilities, which are at a ratio of approximately 1:2:3 for
the a, b, and c axes. Possible effects of pressure on the electronic properties
of LaTiO_3.41 are discussed.Comment: 5 pages, 6 figure
Time-independent approximations for periodically driven systems with friction
The classical dynamics of a particle that is driven by a rapidly oscillating
potential (with frequency ) is studied. The motion is separated into a
slow part and a fast part that oscillates around the slow part. The motion of
the slow part is found to be described by a time-independent equation that is
derived as an expansion in orders of (in this paper terms to the
order are calculated explicitly). This time-independent equation
is used to calculate the attracting fixed points and their basins of
attraction. The results are found to be in excellent agreement with numerical
solutions of the original time-dependent problem.Comment: 5 pages, 4 figures. Revised version. Minor change
Influence of classical resonances on chaotic tunnelling
Dynamical tunnelling between symmetry-related stable modes is studied in the
periodically driven pendulum. We present strong evidence that the tunnelling
process is governed by nonlinear resonances that manifest within the regular
phase-space islands on which the stable modes are localized. By means of a
quantitative numerical study of the corresponding Floquet problem, we identify
the trace of such resonances not only in the level splittings between
near-degenerate quantum states, where they lead to prominent plateau
structures, but also in overlap matrix elements of the Floquet eigenstates,
which reveal characteristic sequences of avoided crossings in the Floquet
spectrum. The semiclassical theory of resonance-assisted tunnelling yields good
overall agreement with the quantum-tunnelling rates, and indicates that partial
barriers within the chaos might play a prominent role
- …