99 research outputs found

    Differential expression of somatostatin receptor subtypes in human peripheral blood mononuclear cell subsets

    Get PDF
    BACKGROUND: Somatostatin (SS)-binding sites have been demonstrated in human lymphoid tissues and peripheral blood cells. However, not much is known with respect to the SS receptor subtype (sst) expression pattern and the expression of SS itself in the immune system. OBJECTIVE: The aim of this study was to evaluate the mRNA expression of the five known sst (sst(1-5)) in peripheral blood mononuclear cell (sub)populations. Moreover, the expression of the mRNAs encoding SS and the SS-like peptide cortistatin (CST) in immune cell subsets was studied. METHODS: RT-PCR and quantitative PCR were performed to evaluate sst, SS and CST mRNA expression in cells in the basal or activated state. Fluorescence-activated cell sorter (FACS) analysis using fluorescent SS was performed to visualize sst protein on cell membranes. RESULTS: B- and T-lymphocytes selectively expressed sst(3) mRNA. sst(3) expression in B-lymphocytes was significantly lower compared with T-lymphocytes. Unstimulated, freshly isolated monocytes did not express any sst mRNA. Upon activation, monocytes selectively expressed sst(2) mRNA, whereas T-lymphocyte activation upregulated sst(3) expression. sst(2) mRNA expression on monocytes was confirmed by FACS analysis. B- and T-lymphocytes did not express SS mRNA, while both cell types expressed CST mRNA. CST mRNA expression was downregulated following T-lymphocyte activation. CONCLUSION: We demonstrate for the first time unequivocally that human peripheral blood B- and T-lymphocytes selectively express sst(3), whereas monocytes do not express sst. However, upon activation, monocytes are induced to express sst(2A). No expression of SS mRNA was detected in any cell type, whereas all cell types expressed CST mRNA. The differential expression of sst and CST mRNA in lymphocytes and monocytes s

    Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related macular degeneration

    Get PDF
    PURPOSE: The growth of ocular neovascularization is regulated by a balance between stimulating and inhibiting growth factors. Somatostatin affects angiogenesis by inhibiting the growth hormone-insulin-like growth factor axis and also has a direct antiproliferative effect on human retinal endothelial cells. The purpose of our study is to investigate the expression of somatostatin receptor (sst) subtypes and particularly sst subtype 2A (sst2A) in normal human macula, and to study sst2A in different stages of age-related maculopathy (ARM), because of the potential anti-angiogenic effect of somatostatin analogues. METHODS: Sixteen eyes (10 enucleated eyes, 4 donor eyes, and 2 surgically removed choroidal neovascular [CNV] membranes) of 15 patients with eyes at different stages of ARM were used for immunohistochemistry. Formaldehyde-fixed paraffin-embedded slides were incubated with a polyclonal anti-human sst2A antibody. mRNA expression of five ssts and somatostatin was determined in the posterior pole of three normal human eyes by reverse transcriptase-polymerase chain reaction. RESULTS: The immunohistochemical expression of sstA in newly formed endothelial cells and fibroblast-like cells was strong in fibrovascular CNV membranes. mRNA of sst subtypes 1, 2A, and 3, as well as somatostatin, was present in the normal posterior pole; sst subtypes 4 and 5 were not detectable. CONCLUSIONS: Most early-formed CNV in ARM express sst2A. The presence of mRNA of sst subtype 2A was observed in normal human macula, and subtypes 1 and 3 and somatostatin are also present. sst2A receptors bind potential anti-angiogenic somatostatin analogues such as octreotide. Therefore, somatostatin analogues may be an effective therapy in early stages of CNV in ARM

    Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related macular degeneration

    Get PDF
    PURPOSE: The growth of ocular neovascularization is regulated by a balance between stimulating and inhibiting growth factors. Somatostatin affects angiogenesis by inhibiting the growth hormone-insulin-like growth factor axis and also has a direct antiproliferative effect on human retinal endothelial cells. The purpose of our study is to investigate the expression of somatostatin receptor (sst) subtypes and particularly sst subtype 2A (sst2A) in normal human macula, and to study sst2A in different stages of age-related maculopathy (ARM), because of the potential anti-angiogenic effect of somatostatin analogues. METHODS: Sixteen eyes (10 enucleated eyes, 4 donor eyes, and 2 surgically removed choroidal neovascular [CNV] membranes) of 15 patients with eyes at different stages of ARM were used for immunohistochemistry. Formaldehyde-fixed paraffin-embedded slides were incubated with a polyclonal anti-human sst2A antibody. mRNA expression of five ssts and somatostatin was determined in the posterior pole of three normal human eyes by reverse transcriptase-polymerase chain reaction. RESULTS: The immunohistochemical expression of sstA in newly formed endothelial cells and fibroblast-like cells was strong in fibrovascular CNV membranes. mRNA of sst subtypes 1, 2A, and 3, as well as somatostatin, was present in the normal posterior pole; sst subtypes 4 and 5 were not detectable. CONCLUSIONS: Most early-formed CNV in ARM express sst2A. The presence of mRNA of sst subtype 2A was observed in normal human macula, and subtypes 1 and 3 and somatostatin are also present. sst2A receptors bind potential anti-angiogenic somatostatin analogues such as octreotide. Therefore, somatostatin analogues may be an effective therapy in early stages of CNV in ARM

    Somatostatin receptor subtypes in human thymoma and inhibition of cell proliferation by octreotide in vitro

    Get PDF
    Somatostatin (SS) and SS receptor (SSR) subtypes, code-named sst1-5, are heterogeneously expressed in the normal human thymus. This suggests their involvement in controlling the immune and/or neuroendocrine functions in this organ. Moreover, recently a high in vivo uptake of [111In-DTPA-D-Phe1]octreotide has been reporte

    17-β-Estradiol-dependent regulation of somatostatin receptor subtype expression in the 7315b prolactin secreting rat pituitary tumor in vitro and in vivo

    Get PDF
    In the present study, we have investigated the role of estrogens in the regulation of somatostatin receptor subtype (sst) expression in 7315b PRL- secreting rat pituitary tumor cells in vitro and in vivo. sst were undetectable in freshly dispersed cells of the transplantable 7315b tumor. When 7315b cells were cultured in medium containing 10% FCS, the number of high affinity sst increased with prolonged culture time. However, when the medium was supplemented with 10% horse serum (HS) instead of FCS, no sst were detectable on 7315b cells even after three weeks of culturing. In contrast to HS, FCS contains high E2-levels (HS, 8 pM; FCS, 134 pM). The antiestrogen tamoxifen (0.5 μM) significantly inhibited the sst number to 50.5% of the value of untreated FCS-grown cells, suggesting that E2 stimulates sst expression in 7315b rat pituitary tumor cells. E2 (l0 nM) induced a rapid increase in sst number in HS-grown 7315b cells. Octreotide (1μM) significantly inhibited PRL release and the intracellular PRL concentration of 7315b cells that were cultured in medium supplemented with FCS or with HS + l0 nM E2 but not in HS alone. This indicates that the sst present on these cells are biologically active. RT-PCR analysis revealed that none of the five currently known sst subtypes were present in freshly dispersed 7315b pituitary tumor cells. The expression of sst2- and sst3- messenger RNA (mRNA) was unequivocally correlated to the presence of E2 because these sst subtypes were detected only in cells that were cultured for7 and 14 days in medium supplemented with FCS or with HS + 10 nM E2. sst1, sst4 and sst5 messenger RNA could not be detected. The 7315b tumor itself synthesizes and secretes huge amounts of PRL. The high PRL levels in tumor-bearing rats inhibit the ovarian E2-production. No detectable E2 levels could be measured in the serum of 7315b tumor-bearing rats. The sc administration of 20 μg/day E2-benzoate normalized the circulating E2 levels in 7315b tumor- bearing rats. Moreover, E2-treatment indeed induced sst expression in vivo as shown by ligand binding studies using membrane homogenates and [125I- Tyr3]-octreotide as radioligand and by autoradiography on tissue sections. In agreement with the in vitro studies, the expression of the sst2 subtype was established by RT-PCR analysis in 7315b tumors of E2-treated rats. However, in contrast to the in vitro studies. E2-treatment did not effectuate the expression of the sst3 subtype, suggesting that the in vitro stimulus of E2 is stronger. In conclusion: 1) sst2 and sst3 expression in the 7315b rat prolactinoma model is primarily dependent upon the presence of estrogens; 2) the antihormonal action of octreotide in 7315b tumor cells in vitro is mediated via the sst2 and/or sst3 subtypes; 3) the absence of sst expression in vivo can be explained by the hormonal environment of the 7315b tumor cells. The 7315b tumor cells in vivo may down-regulate their own receptor status via their host, because of the ensuing hyperprolactinemia results in a hypo-estrogenic state.</p

    In vitro characterization of somatostatin receptors in the human thymus and effects of somatostatin and octreotide on cultured thymic epithelial cells

    Get PDF
    Somatostatin (SS) and its analogs exert inhibitory effects on secretive and proliferative processes of various cells via high affinity SS receptors (SS-R). SS analogs bind with different affinity to the five cloned SS-R subtypes. Octreotide, an octapeptide SS analog, binds with high affinity to the SS-R subtype 2 (sst2). SS-R have been demonstrated in vivo and in vitro on cells from endocrine and immune systems. Among the lymphatic tissues, the thymus has been shown to contain the highest amount of SS, suggesting a local functional role of the peptide. We investigated the SS distribution and SS-R expression pattern in the normal human thymus using autoradiography, membrane homogenate binding studies, and RT-PCR. In addition, the effect of SS and octreotide on growth of cultured thymic epithelial cells (TEC) was studied. By autoradiography, binding of [125I-Tyr0]-SS-28 and [125I-Tyr3]-octreotide was detected in all seven thymuses studied. Specific [125I-Tyr3]-octreotide binding was shown on membrane preparations from thymuses, while not from cultured thymocytes. RT-PCR showed the expression of sst1, sst2A and sst3 messenger RNA (mRNA) in the thymic tissue, whereas sst1 and sst2A mRNAs were found in isolated TEC. SS mRNA was present in thymic tissue and in isolated TEC. SS and octreotide significantly inhibited 3H-thymidine incorporation in 3 of 3 and 6 of 6 TEC cultures, respectively. The percent inhibition ranged from 38.8 to 66.8% for SS and from 19.1 to 59.5% for octreotide. In conclusion, SS mRNA and sst1, sst2A, and sst3 mRNAs are expressed in the normal human thymus. Cultured TEC selectively express sst1 and sst2A mRNA and respond in vitro to SS and octreotide administration with an inhibition of cell proliferation. These data suggest a paracrine/autocrine role of SS and its receptors in the regulation of cell growth in thymic microenviron
    corecore