79 research outputs found

    Synthesis of silica cryogel-glass fiber blanket by vacuum drying

    Get PDF
    none3Kunjalukkal Padmanabhan, Sanosh; Ul Haq, Ehsan; Licciulli, AntonioKUNJALUKKAL PADMANABHAN, Sanosh; UL HAQ, Ehsan; Licciulli, ANTONIO ALESSANDR

    Setting and curing of mortars obtained by alkali activation and inorganic polymerization from sodium silicate and silica aggregate

    Get PDF
    none4Haq, Ehsan Ul; Kunjalukkal Padmanabhan, Sanosh; Abdul Karim, Muhammad Ramzan; Licciulli, AntonioHaq, Ehsan Ul; KUNJALUKKAL PADMANABHAN, Sanosh; Abdul Karim, Muhammad Ramzan; Licciulli, ANTONIO ALESSANDR

    Effect of Nanosized TiO2 on Nucleation and Growth of Cristobalite in Sintered Fused Silica Cores for Investment Casting

    Get PDF
    Sintered fused silica is often used for making sacrificial cores in investment castings of Ni superalloys. Their usage is fundamental in the manufacture of precise superalloy gas turbine components with complex internal cooling passages. In this study SiO2/ZrSiO4/TiO2 cores were prepared from fused silica powders with different grain size and zircon and TiO2 content by slip casting method. Green samples were sintered at 1230°C at various soaking time: from 0,5 to 10 hours. Thermomechanical and microstructural properties of optimized silica obtained by add of 1,5%wt of TiO2 to SiO2/ZrSiO4 composition have been investigated by three point bending tests, XRD and Hg porosimetric analysis. The influence of cristobalite content on thermal stability at high temperature was studied by an optical dilatometer. At temperature below 1200°C TiO2 appears to act as a phase transformation inhibitor reducing the transformation rate of fused silica to cristobalite at high temperatures. At higher temperature it speeds up the formation of cristobalite. A comparison with commercial silica cores made by injection moulding has been performed. A prototype core was obtained and an investment casting was performed on that

    MitoRes: a resource of nuclear-encoded mitochondrial genes and their products in Metazoa

    Get PDF
    BACKGROUND: Mitochondria are sub-cellular organelles that have a central role in energy production and in other metabolic pathways of all eukaryotic respiring cells. In the last few years, with more and more genomes being sequenced, a huge amount of data has been generated providing an unprecedented opportunity to use the comparative analysis approach in studies of evolution and functional genomics with the aim of shedding light on molecular mechanisms regulating mitochondrial biogenesis and metabolism. In this context, the problem of the optimal extraction of representative datasets of genomic and proteomic data assumes a crucial importance. Specialised resources for nuclear-encoded mitochondria-related proteins already exist; however, no mitochondrial database is currently available with the same features of MitoRes, which is an update of the MitoNuc database extensively modified in its structure, data sources and graphical interface. It contains data on nuclear-encoded mitochondria-related products for any metazoan species for which this type of data is available and also provides comprehensive sequence datasets (gene, transcript and protein) as well as useful tools for their extraction and export. DESCRIPTION: MitoRes consolidates information from publicly external sources and automatically annotates them into a relational database. Additionally, it also clusters proteins on the basis of their sequence similarity and interconnects them with genomic data. The search engine and sequence management tools allow the query/retrieval of the database content and the extraction and export of sequences (gene, transcript, protein) and related sub-sequences (intron, exon, UTR, CDS, signal peptide and gene flanking regions) ready to be used for in silico analysis. CONCLUSION: The tool we describe here has been developed to support lab scientists and bioinformaticians alike in the characterization of molecular features and evolution of mitochondrial targeting sequences. The way it provides for the retrieval and extraction of sequences allows the user to overcome the obstacles encountered in the integrative use of different bioinformatic resources and the completeness of the sequence collection allows intra- and interspecies comparison at different biological levels (gene, transcript and protein)

    Nanocrystalline TiO2 based films onto fibers for photocatalytic degradation of organic dye in aqueous solution

    Get PDF
    Nanocrystalline titania (TiO2) synthesized via sol–gel, by using an alkoxide precursor were deposited onto commercially available silica and alumina fibers, namely E-Glass and Nextel 650, respectively. Different processing conditions and material preparation parameters, such as amount of TiO2, film composition and annealing temperature were tested in order to obtain nanocrystalline TiO2 with different morphological and structural characteristics. The materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and the Brunauer, Emmett, and Teller (BET) surface area measurements. The photocatalytic activity of the obtained coated fibers was investigated by monitoring the degradation of a model molecule, an azo dye (Methyl Red), under UV irradiation in aqueous solution. The detected photocatalytic performance of the sol–gel derived nanocrystalline TiO2 was explained on the basis of mechanism associated to the photocatalytic decomposition of organic molecules using semiconductor oxides and accounted for the structural and morphological characteristics of the TiO2 based coating. The materials with the most suited characteristics for photocatalysis were used to scale up the deposition onto a larger sample of fiber and then tested in a photocatalytic reactor. A commercially available TiO2 standard material (TiO2 P25 Degussa) was used as reference, in order to ultimately assess the viability of the coating process for real application

    Efficacy Evaluation of Cu- and Ag-Based Antibacterial Treatments on Polypropylene Fabric and Comparison with Commercial Products

    Get PDF
    Filter masks are disposable devices intended to be worn in order to reduce exposure to potentially harmful foreign agents of 0.1–10.0 microns. However, to perform their function correctly, these devices should be replaced after a few hours of use. Because of this, billions of non-biodegradable face masks are globally discarded every month (3 million/minute). The frequent renewal of masks, together with the strong environmental impact of non-biodegradable plastic-based mask materials, highlights the need to find a solution to this emerging ecological problem. One way to reduce the environmental impact of masks, decrease their turnover, and, at the same time, increase their safety level is to make them able to inhibit pathogen proliferation and vitality by adding antibacterial materials such as silver, copper, zinc, and graphene. Among these, silver and copper are the most widely used. In this study, with the aim of improving commercial devices’ efficacy and eco-sustainability, Ag-based and Cu-based antibacterial treatments were performed and characterized from morphological, compositional, chemical–physical, and microbiological points of view over time and compared with the antibacterial treatments of selected commercial products. The results demonstrated the good distribution of silver and copper particles onto the surface of the masks, along with almost 100% antibacterial capabilities of the coatings against both Gram-positive and Gram-negative bacteria, which were still confirmed even after several washing cycles, thus indicating the good potential of the developed prototypes for mask application

    Dysregulation of MicroRNAs and Target Genes Networks in Peripheral Blood of Patients With Sporadic Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease. While genetics and other factors contribute to ALS pathogenesis, critical knowledge is still missing and validated biomarkers for monitoring the disease activity have not yet been identified. To address those aspects we carried out this study with the primary aim of identifying possible miRNAs/mRNAs dysregulation associated with the sporadic form of the disease (sALS). Additionally, we explored miRNAs as modulating factors of the observed clinical features. Study included 56 sALS and 20 healthy controls (HCs). We analyzed the peripheral blood samples of sALS patients and HCs with a high-throughput next-generation sequencing followed by an integrated bioinformatics/biostatistics analysis. Results showed that 38 miRNAs (let-7a-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-103a-3p, miR-106b-3p, miR-128-3p, miR-130a-3p, miR-130b-3p, miR-144-5p, miR-148a-3p, miR-148b-3p, miR-15a-5p, miR-15b-5p, miR-151a-5p, miR-151b, miR-16-5p, miR-182-5p, miR-183-5p, miR-186-5p, miR-22-3p, miR-221-3p, miR-223-3p, miR-23a-3p, miR-26a-5p, miR-26b-5p, miR-27b-3p, miR-28-3p, miR-30b-5p, miR-30c-5p, miR-342-3p, miR-425-5p, miR-451a, miR-532-5p, miR-550a-3p, miR-584-5p, miR-93-5p) were significantly downregulated in sALS. We also found that different miRNAs profiles characterized the bulbar/spinal onset and the progression rate. This observation supports the hypothesis that miRNAs may impact the phenotypic expression of the disease. Genes known to be associated with ALS (e.g., PARK7, C9orf72, ALS2, MATR3, SPG11, ATXN2) were confirmed to be dysregulated in our study. We also identified other potential candidate genes like LGALS3 (implicated in neuroinflammation) and PRKCD (activated in mitochondrial-induced apoptosis). Some of the downregulated genes are involved in molecular bindings to ions (i.e., metals, zinc, magnesium) and in ions-related functions. The genes that we found upregulated were involved in the immune response, oxidation–reduction, and apoptosis. These findings may have important implication for the monitoring, e.g., of sALS progression and therefore represent a significant advance in the elucidation of the disease’s underlying molecular mechanisms. The extensive multidisciplinary approach we applied in this study was critically important for its success, especially in complex disorders such as sALS, wherein access to genetic background is a major limitation

    Copper-ruby monoliths by the sol-gel process

    No full text
    Preparation and properties of uniformly dispersed Cu metal nanoclusters embedded in bulk silica are described. Clear gels were prepared from Cu(NO3)2,H2N(CH2)2NH(CH2)3Si(OCH3)3 (DAMO), and acid hydrolyzed Si(OC2Hs)4(TEOS). The role of DAMO to immobilize Cu 2+ in silica network is studied. The appearance of a strong surface plasmon band of Cu colloids at 562 nm was observed after heat treatment of the gels at 900°C in 5%H2-95%N 2 gas atmosphere. At this stage very uniform ruby-red color of the sample was established due to the formation of copper nanocrystals of mean diameter 15 nm, as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM)
    • …
    corecore