14 research outputs found

    Root Canal Anatomy of Maxillary and Mandibular Teeth

    Get PDF
    It is a common knowledge that a comprehensive understanding of the complexity of the internal anatomy of teeth is imperative to ensure successful root canal treatment. The significance of canal anatomy has been emphasized by studies demonstrating that variations in canal geometry before cleaning, shaping, and obturation procedures had a greater effect on the outcome than the techniques themselves. In recent years, significant technological advances for imaging teeth, such as CBCT and micro-CT, respectively, have been introduced. Their noninvasive nature allows to perform in vivo anatomical studies using large populations to address the influence of several variables such as ethnicity, aging, gender, and others, on the root canal anatomy, as well as to evaluate, quantitatively and/or qualitatively, specific and fine anatomical features of a tooth group. The purpose of this chapter is to summarize the morphological aspects of the root canal anatomy published in the literature of all groups of teeth and illustrate with three-dimensional images acquired from micro-CT technology.info:eu-repo/semantics/publishedVersio

    Root canal morphology and configuration of 123 maxillary second molars by means of micro-CT

    Get PDF
    The aim of this study was to investigate the root canal configuration, accessory canals and number of main foramina of 123 maxillary second molars by means of micro-computed tomography. The teeth were scanned and reproduced with 3D software imaging. The root canal configuration and number of main foramina were evaluated by means of a four-digit system. The morphological complexity of human maxillary second molars is depicted by the number of accessory and connecting canals. The most frequently observed root canal configurations in the mesiobuccal root were 2-2-2/2 (19.5%), 2-2-1/1 (14.6%) and 2-1-1/1 (13.0%). A 1-1-1/1 configuration was observed in 93.5% and in 96.7% in the distobuccal and palatal roots, respectively. The MB1 root canal had one accessory canal (18.7%), and 8.9% of the MB2 root canal had one or two accessory canals. The distobuccal (11.3%) and palatal (14.6%) root canals had at least one accessory canal, and connecting canals were observed in 16.3% of mesiobuccal roots. The MB1, MB2, distobuccal and palatal root canals had one main foramen in 99.2%, 43.1%, 98.4% and 99.2% of samples, respectively. In the mesiobuccal root, one accessory foramen was detected in 14.6%, two were detected in 7.3%, and three were detected in 5.7%. The distobuccal root showed one or two accessory foramina in 9.1% of samples. The root canal configuration of maxillary second molars is quite heterogeneous; the mesiobuccal root has predominantly two root canal entrances (58.4%, 1 in 41.1%) with one main foramen (54.4%). Two main foramina were observed in 43.0%. Morphological variations, connecting and accessory canals were observed in all apical thirds

    Traumatic gemination – triple tooth. Survey of the literature and report of a case

    Full text link
    PubMed ID: 1289072Abstract Gemination and twinning are two rarely encountered developmental abnormalities. Although the precise etiology remains unknown, genetic predisposition is often suggested in the process. In the present study a maxillary incisor with three crowns of conical shape and three roots which were presumed to be the gemination of the tooth due to trauma, is reported. Copyright © 1992, Wiley Blackwell. All rights reserve

    Textural Kinetics: A Novel Dynamic Contrast-Enhanced (DCE)-MRI Feature for Breast Lesion Classification

    Full text link
    Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of the breast has emerged as an adjunct imaging tool to conventional X-ray mammography due to its high detection sensitivity. Despite the increasing use of breast DCE-MRI, specificity in distinguishing malignant from benign breast lesions is low, and interobserver variability in lesion classification is high. The novel contribution of this paper is in the definition of a new DCE-MRI descriptor that we call textural kinetics, which attempts to capture spatiotemporal changes in breast lesion texture in order to distinguish malignant from benign lesions. We qualitatively and quantitatively demonstrated on 41 breast DCE-MRI studies that textural kinetic features outperform signal intensity kinetics and lesion morphology features in distinguishing benign from malignant lesions. A probabilistic boosting tree (PBT) classifier in conjunction with textural kinetic descriptors yielded an accuracy of 90%, sensitivity of 95%, specificity of 82%, and an area under the curve (AUC) of 0.92. Graph embedding, used for qualitative visualization of a low-dimensional representation of the data, showed the best separation between benign and malignant lesions when using textural kinetic features. The PBT classifier results and trends were also corroborated via a support vector machine classifier which showed that textural kinetic features outperformed the morphological, static texture, and signal intensity kinetics descriptors. When textural kinetic attributes were combined with morphologic descriptors, the resulting PBT classifier yielded 89% accuracy, 99% sensitivity, 76% specificity, and an AUC of 0.91
    corecore