238 research outputs found

    Vitamin e-loaded membrane dialyzers reduce hemodialysis inflammaging

    Get PDF
    Background Inflammaging is a persistent, low-grade, sterile, nonresolving inflammatory state, associated with the senescence of the immune system. Such condition downregulates both innate and adaptive immune responses during chronic disorders as type II diabetes, cancer and hemodialysis, accounting for their susceptibility to infections, malignancy and resistance to vaccination. Aim of this study was to investigate hemodialysis inflammaging, by evaluating changes of several hemodialysis treatments on indoleamine 2,3-dioxygenase-1 activity and nitric oxide formation. Methods We conducted a randomized controlled observational crossover trial. Eighteen hemodialysis patients were treated with 3 different hemodialysis procedures respectively: 1) Low-flux bicarbonate hemodialysis, 2) Low-flux bicarbonate hemodialysis with vitamin E - loaded dialyzers, and 3) Hemodialfitration. The control group consisted of 14 hospital staff healthy volunteers. Blood samples were collected from all 18 hemodialysis patients just after the long interdialytic interval, at the end of each hemodialysis treatment period. Results Hemodialysis kynurenine and kynurenine/L - tryptophan blood ratio levels were significantly higher, when compared to the control group, indicating an increased indoleamine 2,3-dioxygenase-1 activity in hemodialysis patients. At the end of the low-flux bicarbonate hemodialysis with vitamin E - loaded dialyzers period, L - tryptophan serum levels remained unchanged vs both low-flux bicarbonate hemodialysis and hemodialfitration. Kynurenine levels instead decreased, resulting in a significant reduction of kynurenine/L - tryptophan blood ratio and indoleamine 2,3-dioxygenase-1 activity, when matched to both low-flux bicarbonate hemodialysis and HDF respectively. Serum nitric oxide control group levels, were significantly lower when compared to all hemodialysis patient groups. Interestingly, low-flux bicarbonate hemodialysis with vitamin E - loaded dialyzers nitric oxide serum levels from venous line blood samples taken 60 min after starting the hemodialysis session were significantly lower vs serum taken simultaneously from the arterial blood line. Conclusions The treatment with more biocompatible hemodialysis procedure as low-flux bicarbonate hemodialysis with vitamin E - loaded dialyzers, reduced indoleamine 2,3-dioxygenase-1 activity and nitric oxide formation when compared to both low-flux bicarbonate hemodialysis and hemodialfitration. These data suggest that low-flux bicarbonate hemodialysis with vitamin E - loaded dialyzers lowering hemodialysis inflammaging, could be associated to changes of proinflammatory signalling a regulated molecular level

    Renal involvement in mushroom poisoning: The case of Orellanus syndrome

    Get PDF
    none8Although mushroom poisoning is a rare cause of acute renal injury, in some cases it may lead to the development of a severe and irreversible renal failure. Orellanus syndrome is the most important example of organic renal damage related to mushroom consumption. It is caused by the ingestion of orellanine, the main toxin of different types of Cortinarius mushrooms (Cortinarius speciosissimus, C. orellanus, C. orellanoides, etc.), and it is characterized by progressive clinical phases with a predominant kidney involvement, finally requiring renal replacement therapy in about 10% of cases. Renal damage is often late and associated with a histological picture of interstitial nephritis. Diagnosis is essentially clinical and no specific therapy has been shown to be effective in preventing and treating renal damage. Here, we describe the case of a patient with mixed wild mushroom poisoning, presenting the typical clinical signs and course of the Orellanus syndrome. This case offers us the opportunity to review the main clinical features of this severe and little-known intoxication.openEsposito, P; La Porta, E; Calatroni, M; Bianzina, S; Libetta, C; Gregorini, M; Rampino, T; Dal Canton, AEsposito, P; La Porta, E; Calatroni, M; Bianzina, S; Libetta, Carmelo; Gregorini, Marilena; Rampino, Teresa; DAL CANTON, Antoni

    Perfusion of isolated rat kidney with Mesenchymal Stromal Cells/Extracellular Vesicles prevents ischaemic injury

    Get PDF
    Kidney donation after circulatory death (DCD) is a less than ideal option to meet organ shortages. Hypothermic machine perfusion (HMP) with Belzer solution (BS) improves the viability of DCD kidneys, although the graft clinical course remains critical. Mesenchymal stromal cells (MSC) promote tissue repair by releasing extracellular vesicles (EV). We evaluated whether delivering MSC-/MSC-derived EV during HMP protects rat DCD kidneys from ischaemic injury and investigated the underlying pathogenic mechanisms. Warm ischaemic isolated kidneys were cold-perfused (4 hrs) with BS, BS supplemented with MSC or EV. Renal damage was evaluated by histology and renal gene expression by microarray analysis, RT-PCR. Malondialdehyde, lactate, LDH, glucose and pyruvate were measured in the effluent fluid. MSC-/EV-treated kidneys showed significantly less global ischaemic damage. In the MSC/EV groups, there was up-regulation of three genes encoding enzymes known to improve cell energy metabolism and three genes encoding proteins involved in ion membrane transport. In the effluent fluid, lactate, LDH, MDA and glucose were significantly lower and pyruvate higher in MSC/EV kidneys as compared with BS, suggesting the larger use of energy substrates by MSC/EV kidneys. The addition of MSC/EV to BS during HMP protects the kidney from ischaemic injury by preserving the enzymatic machinery essential for cell viability and protects the kidney from reperfusion damage

    Hemodialysis Affects Phenotype and Proliferation of CD4-Positive T Lymphocytes

    Get PDF
    CD4+ T lymphocytes of patients with chronic kidney disease (CKD) are characterized by reduced levels of crucial surface antigens and changes in the cell cycle parameters. Recombinant human erythropoietin (rhEPO) normalizes their altered phenotype and proliferative capacity. Mechanisms leading to the deficient responses of T lymphocytes are still not clear but it is postulated that immunological changes are deepened by hemodialysis (HD). Study of activation parameters of CD4+ T lymphocytes in hemodialyzed and predialysis CKD patients could bring insight into this problem. Two groups of patients, treated conservatively (predialysis, PD) and hemodialyzed (HD), as well as healthy controls, were included into the study; neither had received rhEPO. Proportions of main CD4+CD28+, CD4+CD25+, CD4+CD69+, CD4+CD95+, and CD4+HLA-DR+ lymphocyte subpopulations and proliferation kinetic parameters were measured with flow cytometry, both ex vivo and in vitro. No differences were seen in the proportions of main CD4+ lymphocyte subpopulations (CD4+CD28+, CD4+CD25+, CD4+HLA-DR+, CD4+CD69+, CD4+CD95+) between all examined groups ex vivo. CD4+ T lymphocytes of HD patients exhibited significantly decreased expression of co-stimulatory molecule CD28 and activation markers CD25 and CD69 after stimulation in vitro when compared with PD patients and healthy controls. HD patients showed also decreased percentage of CD4+CD28+ lymphocytes proliferating in vitro; these cells presented decreased numbers of finished divisions after 72 h of stimulation in vitro and had longer G0→G1 time when compared to healthy controls. CD4+ T lymphocytes of PD patients and healthy controls were characterized by similar cell cycle parameters. Our study shows that repeated hemodialysis procedure influences phenotype and proliferation parameters of CD4+ T lymphocytes

    Nitric oxide synthetic pathway and cGMP levels are altered in red blood cells from end-stage renal disease patients

    Get PDF
    Red blood cells (RBCs) enzymatically produce nitric oxide (NO) by a functional RBC-nitric oxide synthase (RBC-NOS). NO is a vascular key regulatory molecule. In RBCs its generation is complex and influenced by several factors, including insulin, acetylcholine, and calcium. NO availability is reduced in end-stage renal disease (ESRD) and associated with endothelial dysfunction. We previously demonstrated that, through increased phosphatidylserine membrane exposure, ESRD-RBCs augmented their adhesion to human cultured endothelium, in which NO bioavailability decreased. Since RBC-NOS-dependent NO production in ESRD is unknown, this study aimed to investigate RBC-NOS levels/activation, NO production/bioavailability in RBCs from healthy control subjects (C, N = 18) and ESRD patients (N = 27). Although RBC-NOS expression was lower in ESRD-RBCs, NO, cyclic guanosine monophosphate (cGMP), RBC-NOS Serine1177 phosphorylation level and eNOS/Calmodulin (CaM)/Heat Shock Protein-90 (HSP90) interaction levels were higher in ESRD-RBCs, indicating increased enzyme activation. Conversely, following RBCs stimulation with insulin or ionomycin, NO and cGMP levels were significantly lower in ESRD- than in C-RBCs, suggesting that uremia might reduce the RBC-NOS response to further stimuli. Additionally, the activity of multidrug-resistance-associated protein-4 (MRP4; cGMP-membrane transporter) was significantly lower in ESRD-RBCs, suggesting a possible compromised efflux of cGMP across the ESRD-RBCs membrane. This study for the first time showed highest basal RBC-NOS activation in ESRD-RBCs, possibly to reduce the negative impact of decreased NOS expression. It is further conceivable that high NO production only partially affects cell function of ESRD-RBCs maybe because in vivo they are unable to respond to physiologic stimuli, such as calcium and/or insulin
    • …
    corecore