12 research outputs found

    SOLARIS National Synchrotron Radiation Centre in Krakow, Poland

    Get PDF
    The SOLARIS synchrotron located in Krakow, Poland, is a third-generation light source operating at medium electron energy. The first synchrotron light was observed in 2015, and the consequent development of infrastructure lead to the first users’ experiments at soft X-ray energies in 2018. Presently, SOLARIS expands its operation towards hard X-rays with continuous developments of the beamlines and concurrent infrastructure. In the following, we will summarize the SOLARIS synchrotron design, and describe the beamlines and research infrastructure together with the main performance parameters, upgrade, and development plans

    Application of Raman spectroscopy in testing environmentally friendly carbon materials.

    No full text
    Niniejsza praca dotyczy wpływu podłoża wraz z podwarstwą – nanokrzemionką naniesioną dwiema metodami EPD oraz zol-żel, na właściwości naniesionych na nią wielościennych nanorurek węglowych. Przeprowadzono również porównanie z powłoką utworzoną z wielościennych nanorurek węglowych naniesioną metodą EPD na powierzchnię płytki tytanowej. Badania przeprowadzono wykorzystując dwie metody: Spektroskopie Ramanowską do zbadania krystaliczności powłok, oraz skaningową mikroskopię elektronową -do zobrazowania morfologii powierzchni próbek. Praca zawiera również charakterystykę podłoża - tytanu, podwarstwy- nanokrzemionki, oraz warstwy zewnętrznej –powłoki wielościennych nanorurek węglowych. Każdy z użytych materiałów analizowany z osobna posiada szereg zastosowań w ochronie środowiska. Połączenie użytych materiałów umożliwia równoczesne wykorzystanie ich poszczególnych właściwości. Z przeprowadzonych badań wynika że podwarstwa krzemionkowa poprawia uporządkowanie zastosowanych nanorurek węglowych, w taki sam sposób wpływa ona na tworzącą się amorficzną warstwę tlenków tytanu powstającą na podłożu. Na podstawie przeprowadzonych badań można stwierdzić również że wyższa temperatura wygrzewania płytki tytanowej powoduje wzrost uporządkowania, czyli zmniejszenie amorficznej warstwy tlenków tytanu.This paper concerns the influence of the titanium substrate with the silica as the sublayer –deposited with two methods: EPD and sol-gel, on the properties of multi-walled carbon nanotubes coating. The results were a compared with a multi-walled carbon nanotubes deposited by EPD method on the surface of a titanium plate. This study was performed using two methods: Raman spectroscopy to examine the crystallinity of the coating and scanning electron microscopy -to image the surface morphology of the samples. Work includes also the characteristics of the: substrate - titanium, underlayer- consisted of silica nanoparticles, and an outer layer - multi-walled carbon nanotubes coating. Each of the materials, used in the hybrid coatings production, analyzed separately has a number of applications in environmental protection.Results of research indicate that silica layer improve ordering in carbon nanotubes layer, in the same way it affects an amorphous titanium oxide film forming on a substrate.Additionally higher annealing temperatures cause the increased arrangement in titanium plate, that is reduction in amorphous titanium oxide layer

    Spatially resolved macromolecular orientation in biological tissues using FT-IR imaging

    No full text
    Fourier-transform infrared spectroscopy (FT-IR) in combination with machine learning and chemometrics is an intensively developed, powerful tool for investigation of tissue biochemical composition with simultaneous microscopic visualization. This nondestructive, information rich and label-free technique has been successfully applied in cancer diagnostics. During the development of a disease or inflammatory processes, not only the chemical composition of tissues changes, but also their spatial organization. FT-IR imaging with linear polarization can provide new and useful information about chemically-specific orientation of macromolecules. Here, we present results of spatial macromolecular orientation in human, pancreatic tissue using four-polarization FT-IR method. Despite the much more complex chemical structure of tissue compared to artificial materials such as fibrillar polymers, the obtained orientations of biomolecules in tissue agreed with theoretical prediction

    Super-resolved 3D mapping of molecular orientation with vibrational techniques

    No full text
    When a sample has an anisotropic structure, it is possible to obtain different information, when changing polarization of incident light. Using polarized light of a single vibrational band to determine the in-plane orientation and internal ordering of a sample is a typical practice in materials science. Acquiring mapping data at four different polarizations with a stationary sample than just at two polarizations offers much more insight into the sample structure with proper mathematical treatment. A concurrent analysis of two vibrational bands with perpendicular transition moment orientations allows the understanding of the orientational ordering in three dimensions. We show here, to the best of our knowledge, the first application of concurrent analysis to IR spectromicroscopy data and obtain orientation angles of a model spherulite polycaprolactone sample. Moreover, we show that this method can be easily applied to high resolution, diffraction limited FT-IR and Raman imaging and even to sub-diffraction limit O-PTIR imaging. Due to the non-tomographic experimental approach, no image distortion is visible and nanometer scale orientation domains can be observed. 3D bond orientation maps will enable in-depth characterization of sample structure in a quantitative manner enabling more precise control of their physicochemical properties and function

    Super-resolved 3D mapping of molecular orientation using vibrational techniques

    No full text
    [Image: see text] When a sample has an anisotropic structure, it is possible to obtain additional information controlling the polarization of incident light. With their straightforward instrumentation approaches, infrared (IR) and Raman spectroscopies are widely popular in this area. Single-band-based determination of molecular in-plane orientation, typically used in materials science, is here extended by the concurrent use of two vibration bands, revealing the orientational ordering in three dimension. The concurrent analysis was applied to IR spectromicroscopic data to obtain orientation angles of a model polycaprolactone spherulite sample. The applicability of this method spans from high-resolution, diffraction-limited Fourier transform infrared (FT-IR) and Raman imaging to super-resolved optical photothermal infrared (O-PTIR) imaging. Due to the nontomographic experimental approach, no image distortion is visible and nanometer scale orientation domains can be observed. Three-dimensional (3D) bond orientation maps enable in-depth characterization and consequently precise control of the sample’s physicochemical properties and functions
    corecore