2 research outputs found

    Iodine Sorption Value and Surface Chemical Analysis of Regenerated Cellulosic Fibres

    Get PDF
    Abstract The surface chemical analysis and bulk analysis were conducted for fibres regenerated from waste garments and treated with iodine solution. The aim was to assess the fibre accessibility by the iodine solution and ascertain the location of the reagent within the fibres. X-ray Photoelectron Spectroscopy (XPS) analysis indicated that the fibres regenerated from indigo dyed waste denim garments (ReCell-Denim) had a relatively high accessibility by the iodine solution compared to the standard lyocell, ReCell-1 and ReCell-2 fibres. With the exception of ReCell-Denim, the standard lyocell, ReCell-1 and ReCell-2 fibre's iodine sorption values correlated well with the percentage crystallinity. The high accessibility of the ReCell-Denim fibres was attributed to the presence of the positively charged nitrogen from the indigo dyes that improved the substantivity of the fibres to the iodine solution. The iodine sorption of the fibres is relatively higher in the bulk compared to the fibre surface

    Investigation into the removal of a formaldehyde-free easy care cross-linking agent from cotton and the potential for subsequent regeneration of lyocell-type fibres

    Get PDF
    1,2,3,4-Butane tetracarboxylic acid (BTCA)-treated cotton fabrics were immersed in alkali for increasing time periods and the effectiveness of alkali in removing the cross-linking agent was investigated by surface (X-ray photoelectron spectroscopy, XPS) analysis, attenuated total reflectance Fourier transform infrared spectroscopy and solubility in specific solvents. The cellulose yield after the chemical ‘stripping’ processes was established and the effect of the alkali treatments on the degree of polymerization of the resultant cellulose determined. Surface analyses and solubility tests suggested that the alkali alone could successfully remove the BTCA from the crease resist-treated cotton fabric and produced a commercially viable yield of cellulose
    corecore