6,680 research outputs found

    Atom interferometry in the presence of an external test mass

    Full text link
    The influence of an external test mass on the phase of the signal of an atom interferometer is studied theoretically. Using traditional techniques in atom optics based on the density matrix equations in the Wigner representation, we are able to extract the various contributions to the phase of the signal associated with the classical motion of the atoms, the quantum correction to this motion resulting from atomic recoil that is produced when the atoms interact with Raman field pulses, and quantum corrections to the atomic motion that occur in the time between the Raman field pulses. By increasing the effective wave vector associated with the Raman field pulses using modified field parameters, we can increase the sensitivity of the signal to the point where the quantum corrections can be measured. The expressions that are derived can be evaluated numerically to isolate the contribution to the signal from an external test mass. The regions of validity of the exact and approximate expressions are determined.Comment: 23 pages, 3 figures, 2 table

    Momentum Transfer by Laser Ablation of Irregularly Shaped Space Debris

    Get PDF
    Proposals for ground-based laser remediation of space debris rely on the creation of appropriately directed ablation-driven impulses to either divert the fragment or drive it into an orbit with a perigee allowing atmospheric capture. For a spherical fragment, the ablation impulse is a function of the orbital parameters and the laser engagement angle. If, however, the target is irregularly shaped and arbitrarily oriented, new impulse effects come into play. Here we present an analysis of some of these effects.Comment: 8 pages, Proceedings of the 2010 International High-Power Laser Ablation Conferenc

    Landau equations and asymptotic operation

    Full text link
    The pinched/non-pinched classification of intersections of causal singularities of propagators in Minkowski space is reconsidered in the context of the theory of asymptotic operation as a first step towards extension of the latter to non-Euclidean asymptotic regimes. A highly visual distribution-theoretic technique of singular wave fronts is tailored to the needs of the theory of Feynman diagrams. Besides a simple derivation of the usual Landau equations in the case of the conventional singularities, the technique naturally extends to other types of singularities e.g. due to linear denominators in non-covariant gauges etc. As another application, the results of Euclidean asymptotic operation are extended to a class of quasi-Euclidean asymptotic regimes in Minkowski space.Comment: 15p PS (GSview), IJMP-A (accepted

    Alien Registration- Libby, Bernice B. (Presque Isle, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/33546/thumbnail.jp

    Petawatt laser absorption bounded

    Full text link
    The interaction of petawatt (1015 W10^{15}\ \mathrm{W}) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light ff, and even the range of ff is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that ff exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials
    • …
    corecore