709 research outputs found
Impact of body tilt on the central aortic pressure pulse.
The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, -10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (Tcf) and carotid-tibial forward propagation times (Tct) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both Tct (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in Tct and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9-2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs
Nitric oxide and peroxynitrite in health and disease
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review
Acute pulmonary hypertension caused by tumor embolism: a report of two cases.
Acute pulmonary hypertension leading to right ventricular failure and circulatory collapse is usually caused by thromboembolic obstruction of the pulmonary circulation. However, in rare instances, other causes can be associated with a similar clinical presentation. We present and discuss the clinical histories of two patients with acute right ventricular failure due to an atypical cause of pulmonary hypertension, disseminated pulmonary tumor embolism
Nitrosative stress and pharmacological modulation of heart failure
Dysregulation of nitric oxide (NO) and increased oxidative and nitrosative stress are implicated in the pathogenesis of heart failure. Peroxynitrite is a reactive oxidant that is produced from the reaction of nitric oxide with superoxide anion and impairs cardiovascular function through multiple mechanisms, including activation of matrix metalloproteinases (MMPs) and nuclear enzyme poly(ADP-ribose) polymerase (PARP). Recent studies suggest that the neutralization of peroxynitrite or pharmacological inhibition of MMPs and PARP are promising new approaches in the experimental therapy of various forms of myocardial injury. In this article, the role of nitrosative stress and downstream mechanisms, including activation of MMPs and PARP, in various forms of heart failure are discussed and novel emerging therapeutic strategies offered by neutralization of peroxynitrite and inhibition of MMPs and PARP in these pathophysiological conditions are reviewed
Disposition of voriconazole during continuous veno-venous haemodiafiltration (CVVHDF) in a single patient
Objectives: To determine whether voriconazole dosage adjustment is required during continuous veno-venous haemodiafiltration (CVVHDF). Methods: Voriconazole pharmacokinetics were studied in a critically ill patient under CVVHDF. The analysis was carried out for 12 h following a 6 mg/kg dose. Voriconazole concentrations were measured by HPLC in blood inlet and outlet lines and in dialysate. Results: The total body clearance of voriconazole was 20.3 L/h, with a terminal half-life of 13.7 h and a distribution volume of 399 L. The estimated sieving coefficient was 0.53 and the filtration-dialysis clearance 1.2 L/h. Conclusions: CVVHDF does not significantly affect voriconazole disposition and requires no dosage adjustmen
The role of endogenous and exogenous RasGAP-derived fragment N in protecting cardiomyocytes from peroxynitrite-induced apoptosis.
Peroxynitrite (PN) is a potent nitrating and oxidizing agent generated during various pathological situations affecting the heart. The negative effects of PN result, at least in part, from its ability to activate caspases and apoptosis. RasGAP is a ubiquitously expressed protein that is cleaved sequentially by caspase-3. At low caspase-3 activity, RasGAP is cleaved into an N-terminal fragment, called fragment N, that protects cells by activating the Ras/PI3K/Akt pathway. At high caspase-3 activity, fragment N is further cleaved and this abrogates its capacity to stimulate the antiapoptotic Akt kinase. Fragment N formation is crucial for the survival of cells exposed to a variety of stresses. Here we investigate the pattern of RasGAP cleavage upon PN stimulation and the capacity of fragment N to protect cardiomyocytes. PN did not lead to sequential cleavage of RasGAP. Indeed, PN did not allow accumulation of fragment N because it induced its rapid cleavage into smaller fragments. No situations were found in cells treated with PN in which the presence of fragment N was associated with survival. However, expression of a caspase-resistant form of fragment N in cardiomyocytes protected them from PN-induced apoptosis. Our results indicate that the antiapoptotic pathway activated by fragment N is effective at inhibiting PN-induced apoptosis (as seen when cardiomyocytes express a capase-3-resistant form of fragment N) but because fragment N is too transiently generated in response to PN, no survival response is effectively produced. This may explain the marked deleterious consequences of PN generation in various organs, including the heart
Beneficial effects of a novel ultrapotent poly(ADP-ribose) polymerase inhibitor in murine models of heart failure
Overactivation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) contributes to the development of cell dysfunction and tissue injury in various pathophysiological conditions associated with oxidative and nitrosative stress, including myocardial reperfusion injury, heart transplantation, diabetic cardiomyopathy and chronic heart failure. In recent studies, we have demonstrated the beneficial effects of a novel ultrapotent PARP inhibitor, INO-1001, on cardiac and endothelial dysfunction and remodeling in rat model of advanced aging-associated chronic heart failure and in a mouse model of heart failure induced by aortic banding. In the current study, we have investigated the effect of INO-1001 on the development of heart failure induced by permanent ligation of the left anterior descending coronary artery, heart failure induced by doxorubicin and acute myocardial dysfunction induced by bacterial endotoxin. In the coronary ligation model, a significantly depressed left ventricular performance and impaired vascular relaxation of aortic rings were found, and PARP inhibition significantly improved both cardiac function and vascular relaxation. In the doxorubicin model, a single injection of doxorubicin induced high mortality and a significant decrease in left ventricular systolic pressure, +dP/dt, -dP/dt, stroke volume, stroke work, ejection fraction and cardiac output. Treatment with the PARP inhibitor reduced doxorubicin-induced mortality and markedly improved cardiac function. PARP inhibition did not interfere with doxorubicin's antitumor effect. In the endotoxin model of cardiac dysfunction, PARP inhibition attenuated the suppression of myocardial contractility elicited by endotoxin. The current data strengthen the view that PARP inhibition may represent an effective approach for the experimental therapy of various forms of acute and chronic heart failure
P619Role of Toll-like receptor 5 in the development of post-myocardial infarction inflammation
Background: Inflammatory processes play a key role in the pathophysiology of myocardial infarction (MI). Genetic deletion of toll-like recpetors (TLRs), especially TLR2 and TLR4 have shown protective role in murine models of MI. The role of other TLRs remains unknown. We have previously shown that cardiomyocytes express TLR5 and that the ligand of TLR5, flagellin, activates the NF-kappaB and MAPK pathways in cardiomyocytes. We also have shown that injection of flagellin induces acute systolic dysfunction in vivo in mice. Aim: Determine the role of TLR5 in the development of post-MI inflammation. Methods: A murine model of myocardial infarction was done by a 30 minutes ligation of the left anterior descending coronary artery followed by 2 hours of reperfusion. Infarct size was measured by standard Evans blue/TTC staining. Plasma creatine kinase (CK) was quantified as a read out of myocardial necrosis. Tissue and plasma cytokines (MIP-2, MCP-1, IL-6) were quantified by ELISA. To determine the extent of tissue lipid peroxidation we used malondialdehyde and 4-hydroxynonenal-HIS adduct assays. Tissue protein oxidation was tested by protein carbonyl ELISA kit. Phosphorylation of MAPK was analyzed by western blot. Results: Genetic suppression of TLR5 induced a significant increase of myocardial infarct size and plasma CK, of biochemical markers of myocardial oxidative stress, and cytokine levels in the heart and the plasma after MI. These effects were associated with a marked enhancement of p38 phosphorylation in the heart from TLR5 KO mice. Conclusion: TLR5 protects from acute myocardial injury and reduces local and systemic inflammation during myocardial infarction. The mechanisms may involve reduced p38 signaling, decreased oxidative stress and attenuated cytokine expression. Research supported by the Swiss National Science Foundation, Grant n° 310030_135394/
Natriuretic Peptide Receptor B modulates the proliferation of the cardiac cells expressing the Stem Cell Antigen-1.
Brain Natriuretic Peptide (BNP) injections in adult "healthy" or infarcted mice led to increased number of non-myocyte cells (NMCs) expressing the nuclear transcription factor Nkx2.5. The aim of this study was to identify the nature of the cells able to respond to BNP as well as the signaling pathway involved. BNP treatment of neonatal mouse NMCs stimulated Sca-1 <sup>+</sup> cell proliferation. The Sca-1 <sup>+</sup> cells were characterized as being a mixed cell population involving fibroblasts and multipotent precursor cells. Thus, BNP treatment led also to increased number of Sca-1 <sup>+</sup> cells expressing Nkx2.5, in Sca-1 <sup>+</sup> cell cultures in vitro and in vivo, in the hearts of neonatal and adult infarcted mice. Whereas BNP induced Sca-1 <sup>+</sup> cell proliferation via NPR-B receptor and protein kinase G activation, CNP stimulated Sca-1 <sup>+</sup> cell proliferation via NPR-B and a PKG-independent mechanism. We highlighted here a new role for the natriuretic peptide receptor B which was identified as a target able to modulate the proliferation of the Sca-1 <sup>+</sup> cells. The involvement of NPR-B signaling in heart regeneration has, however, to be further investigated
- …
