5 research outputs found

    Multichannel visual evoked potentials in the assessment of visual pathways in children with marked brain abnormalities

    Get PDF
    Purpose To demonstrate how multichannel visual evoked potentials (VEPs) can provide quantitative measures of visual function in children with marked cortical anatomy abnormalities. Methods Four children with marked brain pathology (2 holoprosencephaly, 2 giant interhemispheric cysts with hydrocephalus) underwent pattern reversal and flash VEP recordings from 16 equally distributed electrodes. Voltage maps of the major VEP components were constructed, and their distributions were compared to the magnetic resonance imaging (MRI) findings. Results No reproducible responses were evident in 1 case, and responses were present, but, as expected based on the MRI finding, not over the occipital electrodes in 3 cases. Thus, the standard clinical VEP electrode placement would not have detected responses. The distribution of responses during monocular testing obtained in 2 cases suggested normal decussation of the visual pathways at the chiasm, and voltage mapping indicated which part of the abnormally positioned brain tissue is functional visual cortex. Conclusions In children with markedly abnormal brain anatomy, multichannel VEP recordings can provide quantifiable measures of visual pathway function detected in atypical locations. VEPs provide a quantifiable measure of visual function that could be used to assist in determining visual acuity levels, and offered a baseline for monitoring in the context of raised intracranial pressure. These recordings were also able to identify functional anatomical structures that were not apparent on MRI. In a clinical setting, the use of additional recordings from nonstandard electrode placement based on the MRI findings is suggested

    Leber Congenital Amaurosis Associated with Mutations in CEP290, Clinical Phenotype, and Natural History in Preparation for Trials of Novel Therapies

    Get PDF
    PURPOSE: To investigate and describe in detail the demographics, functional and anatomic characteristics, and clinical course of Leber congenital amaurosis (LCA) associated with mutations in the CEP290 gene (LCA-CEP290) in a large cohort of adults and children. DESIGN: Retrospective case series. PARTICIPANTS: Patients with mutations in CEP290 identified at a single UK referral center. METHODS: Review of case notes and results of retinal imaging (color fundus photography, fundus autofluorescence [FAF] imaging, OCT), electrophysiologic assessment, and molecular genetic testing. MAIN OUTCOME MEASURES: Molecular genetic testing, clinical findings including visual acuity and retinal imaging, and electrophysiologic assessment. RESULTS: Forty patients with LCA-CEP290 were identified. The deep intronic mutation c.2991+1655 A>G was the most common disease-causing variant (23/40 patients) identified in the compound heterozygous state in 20 patients (50%) and homozygous in 2 patients (5%). Visual acuity (VA) varied from 6/9 to no perception of light, and only 2 of 12 patients with longitudinal VA data showed deterioration in VA in their better-seeing eye over time. A normal fundus was found at diagnosis in younger patients (mean age, 1.9 years), with older patients showing white flecks (mean age, 5.9 years) or pigmentary retinopathy (mean age, 21.7 years). Eleven of 12 patients (92%) with OCT imaging had preservation of foveal architecture. Ten of 12 patients (83%) with FAF imaging had a perifoveal hyperautofluorescent ring. Having 2 nonsense CEP290 mutations was associated with worse final VA and the presence of nonocular features. CONCLUSIONS: Detailed analysis of the clinical phenotype of LCA-CEP290 in a large cohort confirms that there is a window of opportunity in childhood for therapeutic intervention based on relative structural preservation in the central cone-rich retina in a significant proportion of patients, with the majority harboring the deep intronic variant potentially tractable to several planned gene editing approaches

    Study of Optimal Perimetric Testing In Children (OPTIC): Development and feasibility of the kinetic perimetry reliability measure (KPRM)

    Get PDF
    INTRODUCTION: Interpretation of perimetric findings, particularly in children, relies on accurate assessment of test reliability, yet no objective measures of reliability exist for kinetic perimetry. We developed the kinetic perimetry reliability measure (KPRM), a quantitative measure of perimetric test reproducibility/reliability and report here its feasibility and association with subjective assessment of reliability. METHODS: Children aged 5-15 years, without an ophthalmic condition that affects the visual field, were recruited from Moorfields Eye Hospital and underwent Goldmann perimetry as part of a wider research programme on perimetry in children. Subjects were tested with two isopters and the blind spot was plotted, followed by a KPRM. Test reliability was also scored qualitatively using our examiner-based assessment of reliability (EBAR) scoring system, which standardises the conventional clinical approach to assessing test quality. The relationship between KPRM and EBAR was examined to explore the use of KPRM in assessing reliability of kinetic fields. RESULTS: A total of 103 children (median age 8.9 years; IQR: 7.1 to 11.8 years) underwent Goldmann perimetry with KPRM and EBAR scoring. A KPRM was achieved by all children. KPRM values increased with reducing test quality (Kruskal-Wallis, p=0.005), indicating greater testretest variability, and reduced with age (linear regression, p=0.015). One of 103 children (0.97%) demonstrated discordance between EBAR and KPRM. CONCLUSION: KPRM and EBAR are distinct but complementary approaches. Though scores show excellent agreement, KPRM is able to quantify withintest variability, providing data not captured by subjective assessment. Thus, we suggest combining KPRM with EBAR to aid interpretation of kinetic perimetry test reliability in children

    Mismatch Negativity (MMN) as an Index of Cognitive Dysfunction

    No full text

    Clinical electrophysiology of the optic nerve and retinal ganglion cells

    No full text
    corecore