31 research outputs found

    Threshold photoelectron photoion coincidence spectroscopy of trichloroethene and tetrachloroethene

    Get PDF
    The threshold photoelectron, the threshold photoelectron photoion coincidence and ion breakdown spectra of trichloroethene and tetrachloroethene have been recorded from 9 – 22 eV. Comparisons with the equivalent data for the three dichloroethene molecules and theoretical calculations highlight the nature of the orbitals involved during photoionisation in this energy range. The ground electronic state of C2_2HCl3+_3^+ (C2_2Cl4+_4^+) is bound, with excited valence states dissociating to C2_2HCl2+_2^+ (C2_2Cl3+_3^+) and C2_2HCl+^+ (C2_2Cl2+_2^+). Appearance energies suggest that C2_2HCl+^+ forms from C2_2HCl3+_3^+ by loss of two chlorine atoms, whereas C2_2Cl2+_2^+ forms from C2_2Cl4+_4^+ by loss of a Cl2_2 molecule. The translational kinetic energy release into C2_2HCl2+_2^+ (C2_2Cl3+_3^+) + Cl is determined as a function of energy. In both cases, the fraction of the available energy released into translational energy of the two products decreases as the photon energy increases

    Vacuum-UV negative photoion spectroscopy of CH4

    Get PDF
    Using synchrotron radiation in the range 12-35 eV, negative ions are detected by mass spectrometry following vacuum-UV photoexcitation of methane. Ion yields for H−^-, CH−^- and CH2−_2^- are recorded, the spectra of CH−^- and CH2−_2^- for the first time. All ions display a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation. Cross sections for ion-pair formation are put onto an absolute scale by calibrating the signal strengths with those of F−^- from SF6_6 and CF4_4. Following normalisation to total vacuum-UV absorption cross sections, quantum yields for anion production are reported. There is a major discrepancy in the H−^- cross section with an earlier measurement, which remains unresolved. The anions arise from both direct and indirect ion-pair mechanisms. For a generic polyatomic molecule AB, the former is defined as AB →\rightarrow A−^- + B+^+ (+ neutrals), the latter as the predissociative crossing of an initially-excited Rydberg state of AB by an ion-pair state. In a separate experiment, the threshold photoelectron spectrum of the second valence band of CH4_4, ionisation to CH4+_4^+ A 2^2A1_1 at 22.4 eV, is recorded with an instrumental resolution of 0.004 eV; many of the Rydberg states observed in indirect ion-pair formation converge to this state. The widths of the peaks are lifetime limited, increasing with increasing vv in the v1v_1 (a1_1) vibrational ladder. They are the first direct measurement of an upper value to the dissociation rate of these levels into fragment ions

    The photoionization dynamics of the three structural isomers of dichloroethene

    Get PDF
    Using tunable vacuum-UV radiation from a synchrotron, the threshold photoelectron spectrum, threshold photoelectron photoion coincidence spectrum and ion breakdown diagram of the 1,1, cis-1,2 and trans-1,2 isomers of C2_2H2_2Cl2_2 have been recorded in the range 9-23 eV. The energies of the peaks in the threshold photoelectron spectrum are in good agreement with outer-valence Greens function caculations. The major difference between the isomers, both predicted and observed experimentally is that the F and G states of C2_2H2_2Cl2+_2^+ are approximately degenerate for 1,1 and trans-1,2, but well separated for the cis-1,2 isomer. The ground and low-lying valence states of C2_2H2_2Cl2+_2^+ are bound, with higher-lying states dissociating to C2_2H2_2Cl+^+ or C2_2H2+_2^+. The translational kinetic energy release into C2_2H2_2Cl+^+ + Cl is determined as a function of energy. Isolated-state behaviour for the low-lying electronic states of C2_2H2_2Cl2+_2^+ becomes more statistical as the energy increases

    Ion Thermochemistry: Summary Of Panel Discussion

    No full text

    Diatomic Molecular Ions

    No full text
    corecore