8 research outputs found

    Long-range transfer of electron-phonon coupling in oxide superlattices

    Full text link
    The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance, and other many-body phenomena in correlated-electron materials is currently the subject of intense research. However, the non-local nature of the interactions between valence electrons and lattice ions, often compounded by a plethora of vibrational modes, present formidable challenges for attempts to experimentally control and theoretically describe the physical properties of complex materials. Here we report a Raman scattering study of the lattice dynamics in superlattices of the high-temperature superconductor YBa2Cu3O7\bf YBa_2 Cu_3 O_7 and the colossal-magnetoresistance compound La2/3Ca1/3MnO3\bf La_{2/3}Ca_{1/3}MnO_{3} that suggests a new approach to this problem. We find that a rotational mode of the MnO6_6 octahedra in La2/3Ca1/3MnO3\bf La_{2/3}Ca_{1/3}MnO_{3} experiences pronounced superconductivity-induced lineshape anomalies, which scale linearly with the thickness of the YBa2Cu3O7\bf YBa_2 Cu_3 O_7 layers over a remarkably long range of several tens of nanometers. The transfer of the electron-phonon coupling between superlattice layers can be understood as a consequence of long-range Coulomb forces in conjunction with an orbital reconstruction at the interface. The superlattice geometry thus provides new opportunities for controlled modification of the electron-phonon interaction in complex materials.Comment: 13 pages, 4 figures. Revised version to be published in Nature Material

    Single-grasp object classification and feature extraction with simple robot hands and tactile sensors

    No full text
    Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a ‘haptic glance’). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads

    Nonlinear flexure coupling elements for precision control of multibody systems

    Get PDF
    Conventional multibody systems used in robotics and automated machinery contain bearing components that exhibit complex and uncertain tribological characteristics. These limit fundamentally the precision of the automated motion and also cause wear. Replacing traditional bearing joints with flexure couplings eliminates these tribological effects, together with wear, reducing necessary system maintenance and offering a potential for increased motion precision. A flexure-coupled multibody system is considered and a novel general solution technique is presented. Derivation of a large deflection flexure coupling model is provided and subsequently validated using an experimental facility. A focused study of a unique double flexure coupling-rigid body system is given; the formulated nonlinear mathematical model can be utilised for feedforward control. Equivalent control is also applied to a corresponding system with traditional bearing joints. The feasibility of replacing bearing joints by flexure couplings is demonstrated in terms of accurate large displacement control and reduction of high frequency disturbances
    corecore