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Conventional multibody systems used in robotics and
automated machinery contain bearing components that
exhibit complex and uncertain tribological characteristics.
These limit fundamentally the precision of the automated
motion and also cause wear. Replacing traditional bearing
joints with flexure couplings eliminates these tribological
effects, together with wear, reducing necessary system
maintenance and offering a potential for increased
motion precision. A flexure-coupled multibody system
is considered and a novel general solution technique
is presented. Derivation of a large deflection flexure
coupling model is provided and subsequently validated
using an experimental facility. A focused study of a unique
double flexure coupling-rigid body system is given; the
formulated nonlinear mathematical model can be utilised
for feedforward control. Equivalent control is also applied
to a corresponding system with traditional bearing joints.
The feasibility of replacing bearing joints by flexure
couplings is demonstrated in terms of accurate large
displacement control and reduction of high frequency
disturbances.

1. Introduction
Conventional multibody mechanisms, typically comprising a
number of rigid bodies connected through translating and/or
rotary joints, are used widely in robotics and automated
machinery. These enable industrial processes that depend on
fast and precisely controlled motion, such as the assembly and
inspection of manufactured products.

Currently, manufacturing techniques for high added-value
components of complex products, such as in the automotive
and aerospace industries, require jigs to ensure precision
and repeatability of the manufacturing process, allowing
for interchangeability of parts. However, jigs are expensive
to produce and are inflexible; one small adjustment in
the manufacture of a component may require an extensive
modification to a jig.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:N.Y.Bailey@bath.ac.uk


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

One way to improve the manufacturing process, making it more flexible and cost effective whilst
maintaining the accuracy and repeatability, is to introduce robotics and sensors. This has been the recent
trend in manufacturing, with the overall aim of achieving high-added value products and systems of high
precision.

The efficiency and precision of robotic systems is limited by complex and uncertain tribological
effects within traditional bearing joints, including backlash, stiction, friction, torque ripple and compliance.
These joints generally experience wear, causing degradation of performance over a period of operation.
Combining multiple joints in a single mechanism compounds the individual effects from each joint,
resulting in larger uncertain tribological effects overall. In turn, these effects limit device capability to
accurately follow desired displacement, velocity or acceleration profiles. It is difficult to compensate for
these uncertain and nonlinear effects with active control. However, the source of these effects may be
eliminated through new designs of multibody mechanisms containing compact deformable structures, also
known as flexure couplings. They facilitate movement between rigid bodies through elastic deformation,
which is not subject to wear nor requires lubrication. However, flexure couplings introduce additional
degrees of freedom in which a mechanism can undergo dynamic motion, resulting in systems with
complex mechanical behaviour. Nevertheless, with accurately predicted flexure coupling behaviour, suitable
actuation and control methodology, precise and repeatable motion of a mechanism should be achievable,
without oscillations or instabilities.

Flexure couplings are common in micro- and nano-positioning mechanisms, due to their capacity for
high positioning accuracy together with robustness against parasitic motion errors and external disturbances
[1,2]. Other advantages include preventing low frequency excitation of components due to their increased
stiffness compared to traditional joints [3], resulting in precise and repeatable motion. On a larger scale,
bearing joints have already been replaced with flexure couplings in some robotic mechanisms. For example,
there has been significant research into the design of low-complexity, compliant, adaptive robot hands
for grasping and dexterous manipulation. This includes stable, minimal effort grasps of robotic hands
incorporating parasitic object motion compensation post-contact [4], medium-complexity robot hand to
allow for delicate fingertip grasps and medium-dexterity manipulation tasks to be performed [5]. Adaptive
robot grippers with haptic object properties and an ability to identify objects during a single functional
grasp have also been examined [6]. Solid-state hinges have been investigated to replicate the function
of conventional bearings for both rotational and translational motions [7]. These have increased off-axis
stiffness and minimal axis drift, while achieving a larger range of motion than conventional flexure joints.
The complete range of motion is determined by the material and geometry of the joint.

For a mechanism containing flexure couplings to achieve a prescribed trajectory under active control, the
higher order nonlinear elastodynamics of the flexure coupling must be accounted for in the controller design.
Thus, a model-based controller is ideal. Simplified models have been used to examine systems containing a
combination of flexure joints and rigid bodies, forming pseudo-kinematic chains, which are typically based
on pseudo-rigid-body models; the flexure is represented as a serial-chain of rigid bodies connected with
passive elastic joints. A majority of this work focuses on applications with very small displacements [8].
However, an elastic rod fixed at both ends, modelled using this methodology and represented by a set
of nonlinear equations derived by discretising differential equations and appropriate boundary conditions
gave good correspondence with experimental results [9]; the author did state more work is needed on error
analysis for more accurate shape estimation. Guo and Lee [10] presented an equivalent pin model, which
accounted for the moving centre of rotation in the coupling and the varying radius of a compliant joint. In
order to have a realistic prediction of the flexure couplings, they may need to be limited in length [11].

More accurate predictions of the flexure behaviour, especially when the flexure undergoes large
deformation, are needed for use in model-based controller design. Previously, large deflections of a flexible
link have been studied extensively when modelled as a nonlinear cantilever beam experiencing an external
force (tip concentrated and/or distributed loads) in the steady case, using the arc length coordinate system.
Many different methods have been implemented, including the analytical Homotopy Analysis Method
[12,13] as well as numerical techniques such as, the finite-element method [14]; a smooth curvature
model [15]; an elliptic-function solution combined with the shooting method [16,17]; a fourth-order Runge-
Kutta method [18,19]; a beam-constraint model [20] and a finite difference method [21]. Although analysis
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of a cantilever beam undergoing large deflections is extensive, models combining these with rigid bodies,
to form pseudo-kinematic chains are very limited. Lobontiu [22] examined the dynamics of a four-link
pendulum, which was excited by gravity alone and consisted of two rigid segments and two flexure
couplings, although these were assumed to have small deformation. The dynamics of an elastica catapult
using a quasi-static response for low acceleration was considered by Armanini et al. [23] where finite
element software analysis, Abaqus, was used for the passive catapult response.

Control of a compact deformable structure undergoing large deflections has been analysed by Gravagne
et al. [24] where a vibration-damping setpoint controller was applied to a planar continuum backbone
section to attenuate vibrations. Meanwhile, Moallem et al. [25] examined a flexible link manipulator with a
payload, using piezoelectric transducers as both an actuator and sensor elements, and implemented control
using a linear-quadratic regulator. A control scheme based on partial feedback linearisation to regulate the
forces exerted by a smart memory alloy actuator pair attached to a flexible beam to control the tip of the
beam was examined by Moallem and Lu [26]. Flexure couplings are not currently used in mechanisms
which are subject to motion control due to their complex behaviour and current lack of understanding of
their dynamics.

This paper considers new approaches to mechanism and controller design for systems incorporating
large deflection flexure couplings. The nonlinear elastodynamics introduced by flexure couplings need to be
accounted for in the controller designed to regulate the actuation forces and thereby achieve accurate motion
tracking. The mathematical formulation of a generic flexure-coupled multibody system is given in Section 2.
Section 3 contains the derivation of a mathematical model for large deformation of a beam like flexure
coupling which is subsequently validated using an experimental test facility. A focused study of a multi-
rigid body system incorporating these flexure couplings is given in Section 4. A dynamic mathematical
model is formulated and comparison is drawn between the theoretical predictions and experimental results.
In Section 5, control methodology is developed using open-loop feedforward control derived from the
mathematical model. The accuracy of controlling the trajectory of a multi-rigid body system containing
flexure couplings is examined to demonstrate their potential in motion control systems.

2. Flexure coupled multibody system
An extended multibody system incorporating flexure couplings, such as in the generic schematic of Figure
1, is examined. Each dynamic subsystem n, has a control force, un, applied to it and may be subject to
external disturbance, denoted by dn. A dynamic subsystem may have a single or multiple flexure couplings
to other subsystems. The coordinates of the position that the flexure couples to a system is indicated by xni,
where i is the index of the subsystem attached to the other end of the flexure. The dynamic subsystem is
described by the state space form

żn = Anzn +Bnun + B̃ndn−
N

∑
m=1
m6=n

B̂nmfnm,

xni = Cnizn +Dniun + D̃nidn−
N

∑
m=1
m6=n

D̂nmifnm, ∀i 6= n. (2.1)

In the set of equations (2.1), zn denotes the position and velocity states of the subsystem n, and fnm the
internal force from the flexure attached to subsystem m experienced by the subsystem n. Matrix An denotes
the subsystem matrix and Bn, B̃n and B̂nm are the input matrices for the control, disturbance and internal
forces, respectively. Ci is the output matrix and Dni, D̃ni and D̂nmi are feedforward matrices for the control,
disturbance and internal forces, respectively.

The state vector solution is given by

zn(t) = zn(0)eAnt +

∫ t

0
eAn(t−τ)

Bnun(τ)+ B̃ndn(τ)−
N

∑
m=1
m6=n

B̂nmfnm(τ)

dτ, (2.2)
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Figure 1. Schematics of a) flexure-coupled system under control with flexure and disturbance forces (inputs) and b) free
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Figure 2. Generic motion of a flexure coupling deformation.

and the system output response is computed by substituting the expression for zn into the equation for xni

in (2.1).
The relationship between the dynamic subsystems is defined by the flexure coupling, as shown in the

schematic of Figure 2, which is given by

x10 = g10(f10), xmn−xnm = gmn(fmn), ∀ n 6= m. (2.3)

where gmn is the function defining the flexure deformation and x01 = 0 (see Figure 1). Therefore the
dynamics of the flexure-coupled multibody system are defined by the set of linear equations for the dynamic
subsystems (2.1) and nonlinear equations for the flexure couplings (2.3).

3. Large deflections of a planar flexure coupling
A model of a planar flexure coupling undergoing large deflections is derived from the nonlinear Euler-
Bernoulli beam theory [27]. In this case the deformation is assumed to be bending primarily with shear
and axial deformations negligible due to the flexure coupling having significantly larger width and length
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Figure 3. Schematic diagram for a flexure coupling in planar motion with force F f = (Ff x,Ff y,Ff θ )
T imposed at the

end.

than thickness. The flexure material is assumed to be linear-elastic isotropic and is treated as prismatic with
constant cross-sectional area A and second moment of area I. The axial stiffness EA of the beam is very high
when compared to bending stiffness EI, where E is the Young’s modulus, and thus the flexure is considered
to experience negligible axial strains.

A set of forces and a moment F f = (Ff x,Ff y,Ff θ )
T is imposed at the tip of the flexure at the centreline,

as shown in Figure 3; regardless of the flexure deflection, Ff x and Ff y are applied in the x and y directions,
respectively. The arc length coordinate s := [0, l f ] is introduced in two-dimensional Euclidean space along
the flexure centreline to define Cartesian coordinates that give rise to geometric nonlinearities [28]. The
Cartesian coordinates at a given length s along the flexure, with angle of deflection θ(s), are given by

x(s) =
∫ s

0
cosθ(u)du, y(s) =

∫ s

0
sinθ(u)du. (3.1)

At the flexure tip, i.e. when s = l f , the coordinates are denoted by x f = (x f ,y f ,θ f )
T .

A model for the flexure coupling is formulated using the classical Euler-Bernoulli hypothesis for large
deformations, where the bending moment at any point of the beam is proportional to the corresponding
curvature. The resulting equation is

EI
dθ

ds
= M(s) =−Ff x(y f − y(s))+Ff y(x f − x(s))+Ff θ , (3.2)

where M(s) denotes the moment at (x(s),y(s)).
The governing equation for the flexure is found by differentiating equation (3.2) with respect to the arc

length s, resulting in the second order nonlinear differential equation for the angle,

d2θ

ds2 =
1

EI
dM
ds

=
1

EI

(
Ff x sinθ −Ff y cosθ

)
, (3.3)

using the relations dx/ds = cosθ and dy/ds = sinθ from (3.1). Boundary conditions are θ(0) = 0 and
dθ(l f )/ds = Ff θ/EI as the flexure is assumed fixed at s = 0 with zero angle and curvature at the free end
is as given in equation (3.2). Therefore, the flexure can be characterised by θ , alone.

Rewriting the flexure governing equation (3.3) as a system of first order ordinary differential equations
and combining with the expressions for the Cartesian coordinates (3.1), results in a system of first order
differential equations

dz1

ds
= z2,

dz2

ds
=

1
EI

(
Ff x sinz1−Ff y cosz1

)
,

dx
ds

= cosz1,
dy
ds

= sinz1, (3.4)

where θ = z1 and dθ/ds = z2. Corresponding boundary conditions are given by

z1(0) = 0, z2(l f ) =
Ff θ

EI
, x(0) = 0, y(0) = 0. (3.5)

For a sufficiently accurate initial estimate, the system of equations (3.4) and (3.5), can be solved using a
finite difference method implementing a three-stage Lobatto IIIa formula.

Possible positions of a flexure coupling experiencing actuation from the set of forces and moment F f ,
are given in Figure 4 for different combinations of Ff y and Ff θ with Ff x fixed at 0 N; if F f = 0, the flexure
is aligned along the x axis. A flexure coupling of length l f = 30 mm and thickness h f = 0.4 mm is examined
with elastic modulus E = 193×109 N/m2 and second moment of area I = 1.6×10−13 m4. Figure 4 shows
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Figure 4. Possible flexure coupling deflections for force/moment combination (Ff y N,Ff θ Nm); Ff x = 0 N. Note that the

two dotted lines have identical external force combinations but different deflected shapes are predicted with different initial

estimates.

a variety of possible flexure deflections and highlights that a flexure coupling may adapt different shapes
under the same applied force F f .

Similarly, for a given end position of the flexure there are multiple forces F f which can achieve this
position. Therefore, for independent actuation of the components of F f , a many-to-many relationship
between the force and tip position dictates that the flexure coupling cannot be solved in an inverse manner,
i.e. for a given end position of the flexure a unique force vector required to achieve this position does not
exist.

(a) Validation of flexure coupling model
The mathematical model for a flexure coupling is validated using the experimental set up shown in Figure
5a). The flexure coupling is made from fully hardened grade 301 stainless steel with a length and width of
30 mm and thickness 0.4 mm; it is clamped in place at either end between two blocks of aluminium with
dowling rods to prevent the flexure coupling moving.

A lead screw actuator provides the force to deflect the flexure coupling via a linkage mechanism, which
is modelled as a series of rigid elements connected with perfect hinges as shown in Figure 5b). The extension
of the actuator rod is l0, lp is the length of the flexure clamp which is parallel to the link of length l2 and
separated by a perpendicular length of lv. Both the flexure clamp and link l2 have the same angle as the
end of the flexure coupling, θ f . The length of linkage between the two joints is l1 at angle φ ; the joints in
the experimental set up are deep groove ball bearings and a linear bearing is used on the actuator rod to
minimise the effects of side loading. The force −F f is applied by the flexure.

In Figure 5b), the effect of the actuator force FA is to impose an equivalent force F = (FN ,FM ,MC)
T at

the point shown. If FA and F are in equilibrium then

FN = FA, FM = FA tanφ , MC =
FA(l2 sin(θ f −φ)+ lv cos(θ f −φ))

cosφ
. (3.6)
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Figure 5. a) Experimental facility to validate flexure model and b) linkage mechanism for the first joint. The force pairs

(FA,F) and (F,−F f ) are in equilibrium.

The equilibrium of F and −F f yields

Ff x = FN , Ff y = FM , Ff θ = MC +FM lp cosθ f −FN lp sinθ f . (3.7)

The angle φ and extension of actuator rod l0 are defined by the system geometry

l0 +κ + l1 cosφ = x f +(lp− l2)cosθ f + lv sinθ f ,

l1 sinφ + lv cosθ f = y f +(lp− l2)sinθ f + lv, (3.8)

where κ is the offset of the start of l0 to the fixed end of the flexure.
The linear actuator input is the actuator rod extension l0 whereas the model input is the force from the

actuator FA. Therefore, experimental results were obtained by displacing the actuator rod by increments of
5 mm and recording the force and position measurements. The force measurements were achieved through
a calibrated strain gauged connector in the actuation mechanism as shown in Figure 5a). The position of
the system was detected using a 3D laser tracker; four laser tracker targets were positioned on the system as
shown in Figure 5a). Figure 6 shows photographs of the system in different states of deflection with actuator
rod extensions: a) 111.6 mm, which gives θ f = 0; b) maximum extension 166.6 mm; and c) minimum
extension 56.6 mm. Note that the linear bearing prevented any further retraction of the linear actuation
rod. Corresponding theoretical predictions of the deformed flexure coupling were found by inputting the
measured forces into the model and computing the flexure tip angle and extension of the actuator rod.

The average of three experimental repeats, together with the model predications for actuator rod
extension l0 against angle θ f and actuator force FA against actuator rod extension l0, are given in Figure 7
for a flexure coupling, a loosely fitted plain bushing hinge and a tightly press-fitted rolling element bearing
hinge. For the case of the flexure coupling the relationship between the actuator rod extension against flexure
tip angle has a good correlation between the experimental results and model predictions over the range of
rod extensions examined. The case of actuator force against actuator rod extension has good correlation
between the experimental results and model predictions when the actuator rod extension is around the
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a)

b) c)

Figure 6. Flexure coupling in different states of deflection with actuator rod extensions: a) 111.6 mm giving θ f = 0; b)

maximum extension 166.6 mm; and c) minimum extension 56.6 mm.

middle extension (111.6 mm). However, increasing or decreasing the actuator rod extension such that large
angles are achieved, gives rise to a discrepancy between the experimental results and model predictions;
this is due to the lateral load experienced by the actuation linkage mechanism (not measured). The results
show there is a one-to-one relationship between the input force FA, the actuator rod extension l0 and the
angle at the end of the flexure coupling, θ f .

The force, FA, is implicit for control purposes as the input is the actuator rod extension and the output is
the deflection of the flexure coupling. Therefore, the discrepancy between the experimental results and the
model predictions in the actuator force and extension relationship, shown in Figure 7b), should not affect
the motion control of the system.

Corresponding results for conventional revolute bearing hinges show that there is good agreement
between the angle θ f and the actuator rod extension l0. This is expected as it is dependent on the geometry
of the actuation linkage in the static case. Examining the input force FA against actuator extension l0 gives
poor correlations between the prediction and experimental results due to the lateral loading which the
hinged system applies to the strain-gauged connector. The experimental system was designed for validation
of the flexure coupling from which lateral loading will be lower. It is noted that the range of FA for the
hinged systems are lower than for the flexure coupling because the actuator force must overcome the flexure
stiffness.

4. Large deflections of flexure coupled rigid bodies in series
To examine the feasibility of implementing flexure couplings into an automated system, an experimental
facility comprising two rigid body links was constructed. A corresponding mathematical model was
formulated, to enable design of an effective controller to regulate the motion of the system. The experimental
system is presented first, followed by a detailed derivation of a model for a single flexure coupling-rigid
body system and the governing equations of a double flexure coupling-rigid body system.
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Figure 7. Experimental results (X) and model predications (—) for a) angle θ f against actuator extension l0 and b)

actuator extension l0 against actuator force FA for 1) a flexure coupling, 2) a loosely fitted plain bushing hinge and 3) a

tightly press-fitted rolling element bearing hinge. Parameter values are in the right hand side of Table 1 and the hinge

length is the same as the flexure coupling length.

(a) Experimental facility
The double flexure coupling-rigid body system is presented in Figure 8a); the flexure couplings (Section
3(a)) can be interchanged with conventional revolute bearing hinges. The first flexure coupling is fixed
rigidly and connected to an aluminium profile framework, which is in turn fixed to a bed plate. The rigid
bodies comprise of a length of aluminium profile and flexure clamps; the first rigid body also has an
actuator attached to the aluminium profile to deflect the second flexure coupling. The first flexure coupling
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Figure 8. a) Experimental facility for double flexure coupling-rigid body system with components annotated and b) system

parameters for mathematical model.

is deflected by an actuator fixed to the framework before the first joint. Both actuators are lead screw devices
and have a linear bearing supporting the actuation rod to minimise any side load, and are connected to the
rigid body through a linkage mechanism. The extension of the actuator rod over time is controlled using
proprietary hardware.

The position of the system is measured using a 3D laser tracker, accurate to within ±0.02 mm; for
static tests the laser tracker targets are positioned on the system as shown in Figure 8a), whereas for the
dynamic test a single laser tracker target is positioned on the rightmost end of the system and tracked
during the complete motion. Figure 8b) shows the system parameters for the mathematical model. The
parameter values used in the model, taken from the physical system, are given in Table 1; the flexure
coupling properties are stated in Section 3.

Table 1. Parameter values for the standard configuration of the mathematical model.

Variable Parameter Value Parameter Value
rigid body length lr1 500 mm lr2 450 mm
rigid body mass m1 2.585 kg m2 0.650 kg
centre of mass along centreline xa1 204.6 mm xa2 197.6 mm
centre of mass below centreline ya1 48.0 mm ya2 75.0 mm
rigid body moment of inertia Ic1 0.177 kgm2 Ic2 0.0167 kgm2

offset of actuator rod κ1 −184 mm κ2 −150 mm
lengths of linkage mechanism l11 93.0 mm l12 93.0 mm

members l21 21.5 mm l22 21.5 mm
lv1 73.0 mm lv2 73.0 mm
lp1 34.6 mm lp2 34.6 mm

acceleration due to gravity g 9.81 m/s2
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free body diagrams. F and F f are as in Figure 5b).

(b) Single flexure coupling-rigid body system model
Initially, a model for a single rigid body connected with a flexure coupling to a fixed point is formulated;
the mass of the flexure is assumed negligible compared to that of the rigid body resulting a pseudo-steady
system. The single flexure coupling-rigid body system is shown in Figure 9a), with the corresponding free
body diagrams showing the centreline of the system given in Figure 9b). The centre of mass of the rigid
body may be offset from the centreline either due to geometric considerations or an actuator attached to
a rigid link; a generic case is considered for the derivation of the dynamic governing equations where the
centre of mass is positioned at a distance (xd , yd) from the end of the rigid body in (x,y) coordinates. The
resulting coordinates of the centre of mass are

xc = x f + xd = x f + xa cosθ f + ya sinθ f ,

yc = y f + yd = y f + xa sinθ f − ya cosθ f ,
(4.1)

where xa and ya are the distances of the centre of mass along and perpendicular to the rigid body,
respectively.

The time dependent force F(t) = (FN(t),FM(t),MC(t))T is found using equations in (3.6) for an imposed
force FA(t) from the actuator through the actuation mechanism given in Figure 5b). The corresponding
moment M at an arc length of s at a given time is specified by equation (3.2). The flexure characteristics do
not have explicit time dependence, however, the set of internal forces F f = (Ff x,Ff y,Ff θ )

T imposed on the
end of the flexure from the rigid body may change with time due to the dynamics of the rigid body, giving
the flexure coupling implicit time dependence. The equations of motion of the rigid body, when considered
as a free body are

mẍc =−Ff x +FN ,

mÿc =−Ff y +FM−mg,

Icθ̈ f = MC−Ff θ +(FN −Ff x)(yd − lp sinθ f )− (FM−Ff y)(xd − lp cosθ f ), (4.2)

where Ic is the moment of inertia about the centre of mass.
Equations (4.2) lead to expressions for the internal forces, which can be substituted into (3.2)-(3.3) to

give the corresponding governing equations for the pseudo-rigid system and boundary conditions,

EIθ
′′(s, t) = (FN −mẍ f )sinθ − (FM−mg−mÿ f )cosθ

+m(xa(θ̈ f cos(θ f −θ)− θ̇
2
f sin(θ f −θ))+ ya(θ̈ f sin(θ f −θ)+ θ̇

2
f cos(θ f −θ))),

EIθ
′(l f , t) = MC− Icθ̈ f −FN lp sinθ f +FM lp cosθ f −m(xa

2 + ya
2)θ̈ f

+m(ẍ f (xa sinθ f − ya cosθ f )− (ÿ f +g)(xa cosθ f + ya sinθ f )),
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θ(0, t) = 0, (4.3)

where ′ denotes differentiation with respect to s. The time derivatives of the centre of mass coordinates are

ẍc = ẍ f − θ̈ f yd − θ̇
2
f xd ,

ÿc = ÿ f + θ̈ f xd − θ̇
2
f yd . (4.4)

The dynamic behaviour of the flexure system is identified by solving equations (4.3) together with the
Cartesian coordinates equations of the flexure (3.1) and corresponding boundary conditions. Discretising
this set of equations in the temporal variable and solving over the spatial variable via a boundary value
problem solver at every time step over the required time span will give a complete dynamic solution.

New variables are introduced as the position and angle at the end of the flexure coupling are unknown;
z1 = θ , z2 = dθ/ds, η(s, t) = z f 1(t)− z1(s, t), X(s, t) = x f (t)− x(s, t) and Y (s, t) = y f (t)− y(s, t), where
subscript f denotes the end of the flexure (s = l f ). This gives solutions without constraints on the flexure
coupling behaviour. Time derivatives are discretised using a backward finite difference approximation with
error of O(4t2) giving the first and second time derivatives of the form,

ż f 1(t) =
−3(η(s, t)+ z1(s, t))/2+2z f 1(t−4t)− z f 1(t−24t)/2

4t2 +O(4t2),

z̈ f 1(t) =
2(η(s, t)+ z1(s, t))−5z f 1(t−4t)+4z f 1(t−24t)− z f 1(t−34t)

4t2 +O(4t2), (4.5)

where4t is the time step. Similar expressions are derived for ẍ f and ÿ f .
The resulting set of first order differential equations to be solved is

dz1

ds
= z2,

dx
ds

= cosz1,
dy
ds

= sinz1,
dη

ds
=−z2,

dX
ds

=−cosz1,
dY
ds

=−sinz1,

dz2

ds
=

1
EI

(
(FN −mẍ f )sinz1− (FM−mg−mÿ f )cosz1 +mxa(z̈ f 1 cos(z f 1− z1)− ż2

f 1 sin(z f 1− z1))

+mya(z̈ f 1 sin(z f 1− z1)+ ż2
f 1 cos(z f 1− z1))

)
,

dl0
ds

= 0,
dφ

ds
= 0. (4.6)

Corresponding boundary conditions

z1(0, t) = 0, x(0, t) = 0, y(0, t) = 0, η(l f , t) = 0, X(l f , t) = 0, Y (l f , t) = 0,

z2(l f , t) =
1

EI
(MC− Icz̈ f 1−FN lp sinz f 1 +FM lp cosz f 1−m(xa

2 + ya
2)z̈ f 1

+m(ẍ f (xa sinz f 1− ya cosz f 1)− (ÿ f +g)(xa cosz f + ya sinz f 1)),

l0(l f , t)+ l1 cosφ(l f , t) = x f −κ +(lp− l2)cosz f 1 + lv sinz f 1,

l1 sinφ(l f , t) = y f +(lp− l2)sinz f 1 + lv− lv cosz f 1, (4.7)

with time derivatives of the form in (4.5). For a given initial estimate and set of initial conditions, the set
of equations and corresponding boundary conditions (4.6)-(4.7) are solved using a finite difference method
implementing a three-stage Lobatto IIIa formula over the arc length at each given time step in the time span.

(c) Double flexure coupling-rigid body system model
Similar methodology can be applied for the double flexure coupling-rigid body system to formulate a
dynamic mathematical model; a schematic of the system is given in Figure 10. For deflecting the first
flexure coupling, the relationship between the actuator force FA1 and force F f 1 is given by the equations
in (3.6) with the angle φ1 and actuator displacement l01 given by (3.8), but with additional subscript 1. A
similar actuation mechanism is used to deflect the second joint but is rotated through angle θ f 1, giving the
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Figure 10. Schematic of the double flexure coupling-rigid body system.

force at the end of second actuation linkage as F f 2 = (FN2,FM2,MC2)
T in terms of the actuator force FA2,

FN2 =
FA2 cosφ2

cos(θ f 1−φ2)
, FM2 =

FA2 sinφ2

cos(θ f 1−φ2)
, MC2 =

FA2(l22 sin(θ f 2−φ2)+ lv2 cos(θ f 2−φ2)

cos(θ f 1−φ2)
, (4.8)

with the angle φ2 and the extension of actuator rod l02 computed using

lp2(cosθ f 1 + cosθ f 2)+ x f 2 = l02 cosθ f 1 + lv2 sinθ f 1 + l22 cosθ f 2 + l12 cosφ2− lv2 sinθ f 2,

lp2(sinθ f 1 + sinθ f 2)+ y f 2 = l02 sinθ f 1− lv2 cosθ f 1 + l22 sinθ f 2 + l12 sinφ2 + lv2 cosθ f 2. (4.9)

where subscript 2 denotes the second flexure coupling and second rigid body.
Again new variables are defined to account for the end positions of the flexures not being known:

z1,3 = θ1,2, z2,4 = θ1,2
′, η1,2(s1,2, t) = z f 1, f 3(t)− z1,3(s1,2, t), X1,2(s1,2, t) = x f 1, f 2(t)− x1,2(s1,2, t) and

Y1,2(s1,2, t) = y f 1, f 2(t)− y1,2(s1,2, t). Following similar methodology to that for a single flexure coupling-
rigid body system the resulting governing equations of the system are a set of first order ordinary differential
equations as given in the Appendix.

A comparison between the theoretical predictions and experimental results of the static position of
the double flexure coupling-rigid body system for different actuator displacements is given in Figure
11. The experimental results were achieved by displacing the actuators by a given amount and using
the laser tracker to measure the position of the system to within ±0.02 mm. The corresponding model
predictions were computed using a look up table for each actuator giving the relationship between the input
actuator force FA1,FA2, actuator rod extension l01, l02 and the result end position and angle of the flexures
(x f 1,y f 1,θ f 1),(x f 2,y f 2,θ f 2). Using these look up tables allows the overall predicted position of the flexure
to be defined. Figure 11 shows good correlation between the theoretical predictions and experimental results
with the greatest discrepancy between the two when the first actuator has a large positive displacement.

5. Trajectory control
Attention is now given to the problem of controlling the motion of the double flexure coupling-rigid body
system introduced in Section 4. It is desired to control the system such that the end of the system follows a
demand trajectory. To demonstrate the feasibility of using flexure couplings the problem is also examined
in a corresponding system with conventional revolute bearing hinges. The following double jointed-rigid
body systems (DR) are considered:
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Figure 11. Comparison between the theoretical predictions and experimental results of the static positions of the double

flexure coupling-rigid body system for actuator rod extension (l01 mm, l02 mm).

(i) incorporating flexure couplings as in Section 4 (DRF);
(ii) incorporating loosely fitted plain bushing hinges, which exhibit backlash of approximately 0.1 mm

on a nominal 8 mm diameter (DRL);
(iii) incorporating hinges whose rolling elements bearings have been pressed tightly into their housing

resulting in zero backlash, but possible torque ripple effects arising from race distortions (DRP).

In practice conventional bearing hinges will exhibit the characteristics of those in the DRL and DRP in
varying degrees due to tolerance variability, wear or manufacturing/assembly errors.

Both the DRL and DRP may be represented using methodology similar to that in Section 4 with
idealised hinge assumptions; the prevailing imperfections of these hinges is generally unknown, and the
characteristics change over time with wear so a more realistic model of the hinges is not used. Feedforward
control inputs, namely the actuator rod extensions, can then be calculated for the end of the system to follow
prescribed trajectories.

For a system incorporating large deflection flexure couplings, it is not sufficient to use a motion controller
designed for a comparable system based on conventional bearing joints. That is, a DRF system cannot be
adequately controlled by a controller designed to be used for a DRL and DRP systems. Instead, a dedicated
motion controller which explicitly takes into account the complex behaviour of the flexible couplings is
required. This is demonstrated by Figure 12 where two demand trajectories for the end of the system to
follow are specified by:

(a) a circular trajectory with radius of 25 mm over td = 5 s given by xp = 25cos(2πt/td −π/2) mm,
yp = 25sin(2πt/td −π/2) mm;

(b) a linear trajectory with length 400 mm over td = 13 s given by xp = 1000 mm,
yp = 200sin(2πt/td −π/2) mm.

The feedforward control inputs required to cause a conventional idealised hinge system to follow these
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Figure 12. Predicted position of the end of a DRF under feedforward control derived using an idealised hinge model:

a) circular trajectory and b) linear trajectory, showing that a dedicated model based controller is required for accurate

tracking.

demand trajectories have been calculated and applied to a DRF system model. The simulated responses are
shown in Figure 12, with significant displacement errors arising in the predicted trajectory of a DRF system.

To achieve a better performance, the controller strategy must be based on a model incorporating flexure
couplings; thus accounts for their complex behaviour. As such, the model derived in Section 4 is used
to compute the required extensions of the actuator rods l01 and l02 needed for the end of the system to
follow a prescribed trajectory (xp(t),yp(t)). In turn this leads to the end of the second flexure having the
trajectory (xp(t)− (lp2 + lr2)cosθ f 2(t),yp(t)− (lp2 + lr2)sinθ f 2(t)). An additional set of equations needs
to be solved simultaneously with the governing equations (A 1) and (A 2), together with equations (3.6) and
(4.8) describing the actuation linkage, which are given by

dFA1

ds
= 0,

dFA2

ds
= 0;

0 = xp2− (yp− (lp2 + lr2)cosθ f 2), 0 = yp2− (yp− (lp2 + lr2)sinθ f 2). (5.1)

These equations impose the constraint of the end trajectory of the system, and that the forces FA1, FA2 are
independent of the arc length. Solving via a boundary value problem solver at each time step gives the
forces FA1, FA2 and actuator displacements l01, l02 required to move the end position of the system along
the desired path. These values can be used in the feedforward control scheme.

To compute the required extensions of the actuator rods over the time span, i.e. the values of l01 and l02
over td , for the DRF the set of equations (A 1), (A 2) and (5.1) with equations for the actuation linkages
(3.6) and (4.8) are solved. A similar set of equations is solved for the system incorporating idealised hinges.

An experimental programme was undertaken to examine the performance of the three DRs. The straight
line demand trajectory (Figure 12b) is investigated and the laser tracker is used to measure the realised
motion of the end of the system for all experimental runs. It is noted that the linear actuators driving the
system exhibit substantially non-ideal performance, including backlash, drift and vulnerability to signal
noise. To have them follow the calculated feedforward control paths as closely as possible, the actuators
themselves operate under a proportional feedback loop; onboard potentiometers measure the actual actuator
extensions, and this signal is subtracted from the extension commanded by the feedforward control scheme
to form an error signal on which the feedback loop operates [29]. The feedback gain value is a balance
between being large enough to give the system good dynamic tracking performance, and being small enough
to avoid amplifying imperfections in the actuators’ characteristics.

Figure 13 shows the three DRs performance when operated under a feedforward controller designed on
the idealised hinge system model. The experimental response of the DRF (Figure 13a) is seen to be similar
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to the theoretical prediction shown in Figure 12b), i.e. a distinct deviation from the demanded trajectory
is evident. Results for the DRL and DRP show smaller errors for 4x, which arise due to a combination of
actuator uncertainty, non-idealised hinges (L and P) and model errors. The errors are relatively small in the
x direction compared to the range of movement in the y direction, but again shows the necessity of a specific
feedforward control methodology for a flexure coupling to achieve accurate positioning.

Figure 14 shows the errors in the position of the end of the system compared to the demand trajectory
over time for the x and y coordinates. The error in the y direction is significantly larger than that in the
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coupling model and b) implemented with a demand correction to minimise the displacement error.

x direction; all cases have a similar trend for 4y, but the flexure coupling has different behaviour to the
two hinge cases for4x. The magnified window view in Figure 14 highlights an example of high frequency
behaviour, at ∼ 13− 14 Hz, which corresponds to a natural frequency of the system. Excitation sources
originate from the nonlinear effects of the hinged components, for example, torque ripple/stick-slip and
backlash. When a flexure coupling is used, which does not exhibit these characteristics, far less excitation is
evident. In the experimental tests these frequencies were persistent and associated more with a limit cycle
response rather than a structural instability. Note that these high frequency components would be amplified
in corresponding acceleration profiles (not shown).

Figure 15a) shows the end trajectory for a DRF when applying the corresponding feedforward control
for the actuator rod extensions derived using the flexure coupling model, for a linear trajectory demand
with additional proportional feedback; see Supplementary Material for a corresponding video of the system
motion. The realised trajectory is closer than that achieved with the idealised hinge control in Figure 13a);
the out of plane motion was minimal. The realised trajectory has small errors arising from a combination
actuator capabilities/non-smooth actuation and control based on an imperfect model. The errors associated
with the feedfoward control action can be reduced further, as in Figure 15b), by subtracting the measured
linear trajectory control error4x,4y from the desired trajectory; the modified feedforward control is then
computed. Results show an improvement in the realised trajectory, which was repeatable over multiple
cycles. The remaining error between the demand and realised trajectory is dominated by the actuator
capabilities/non-smooth actuation.
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6. Conclusions
A novel formulation of a flexure-coupled multibody system is presented, incorporating a model of a flexure
coupling undergoing large nonlinear elastic deflections. This was validated experimentally using a bespoke
facility having force detection and laser tracking capabilities. Assessments were made of an individual
flexure under actuation and an actuated dynamic double flexure-coupled rigid link system. The validation
process demonstrated that the nonlinear models had sufficient fidelity to be utilised for control of prescribed
rigid link trajectories.

The control methodology comprised of feedforward control, identified from the validated models, and
proportional feedback of actuator rod extensions. Although flexure couplings may be alternatives for
idealised hinges, feedforward control based on idealised hinge assumptions gives rise to errors in the
achieved rigid link trajectories. If the same control is applied to traditional rotary joints, smaller errors are
incurred. However, high frequency behaviour was evident in the measurements, corresponding to a natural
frequency of the system. Excitation sources originate from the nonlinear effects of the hinged components,
for example, torque ripple/stick-slip and backlash. The flexure coupling system did not experience such high
frequency effects. The design of feedforward control of a flexure-coupled system incorporating a flexure
coupling model is therefore important and a reduction of tracking error was noted when applied. Further
reduction of the measured tracking error with flexure couplings was also achieved using a modified input
tracking profile and shown to be repeatable over multiple cycles.

The study has therefore demonstrated that flexure couplings have the potential to replace traditional
revolute joints in robotic and other automated systems, if they are able to sustain dynamic loading envelopes.
Furthermore, they do not experience the same tribological effects such as torque ripple, backlash or wear of
traditional joints, hence offer maintenance-free functionality.
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A. Appendix
The governing equations of the double flexure coupling-rigid body system model are the following set of
first order ordinary differential equations

z′1 = z2, z′2 =
F1T

E1I1
, x′1 = cosz1, y′1 = sinz1,

η
′
1 =−z2, X ′1 =−cosz1, Y ′1 =−sinz1,

z′3 = z4, z′4 =
F2T

E2I2
, x′2 = cos(z3), y′2 = sin(z3),

η
′
2 =−z4, X ′2 =−cos(z3), Y ′2 =−sin(z3).

l01
′ = 0, φ1

′ = 0, l02
′ = 0, φ2

′ = 0, (A 1)

with corresponding boundary conditions

z1(0, t) = 0, z2(l f 1, t) =
F̄θ1
E1I1

, x1(0, t) = 0 y1(0, t) = 0,

η1(l f 1, t) = 0, X1(l f 1, t) = 0, Y1(l f 1, t) = 0,

z3(0, t) = θ f 1, z4(l f 2, t) =
F̄θ2
E2I2

, x2(0, t) = x f 1 +(lp1 + lr1)cosθ f 1, y2(0, t) = y f 1 +(lp1 + lr1)sinθ f 1,
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η2(l f 2, t) = θ f 1, X2(l f 2, t) = x f 1 +(lp1 + lr1)cosθ f 1, Y2(l f 2, t) = y f 1 +(lp1 + lr1)sinθ f 1,

l01(l f 1, t)+ l11 cosφ1(l f 1, t) = x f 1−κ +(lp1− l21)cosz f 1 + lv1 sinz f 1,

l11 sinφ(l f 1, t) = y f 1 +(lp1− l21)sinz f 1 + lv1− lv1 cosz f 1,

l02(l f 2, t)cosz f 1 + l12 cosφ2(l f 2, t) = lp2(cosz f 1 + cosz f 2)+ x f 2− lv2 sinz f 1− l22 cosz f 2 + lv2 sinz f 2,

l02(l f 2, t)sinz f 1 + l12 sinφ2(l f 2, t) = lp2(sinz f 1 + sinz f 2)+ y f 2 + lv2 cosz f 1− l22 sinz f 2− lv2 cosz f 2. (A 2)

In (A 1) and (A 2) the functions F1T , F2T , Fθ1 and Fθ2 are given by

F1T = (FN1 +FN2)sinz1− (FM1 +FM2)cosz1− (m1ẍ f 1 +m2(2ẍ f 1 + ¨̄x f 2))sinz1

+(m1(ÿ f 1 +g)+m2(2ÿ f 1 + ¨̄y f 2 +g))cosz1 +m2(lp1 + lr1)(θ̈ f 1 cosη1− θ̇
2
f 1 sinη1)

+m1θ̈ f 1(xa1 cosη1 + ya1 sinη1)−m1θ̇
2
f 1(xa1 sinη1− ya1 cosη1)

+m2θ̈ f 2(xa2 cos(η2 + z3− z1)+ ya2 sin(η2 + z3− z1))

−m2θ̇
2
f 2(xa2 sin(η2 + z3− z1)− ya2 cos(η2 + z3− z1),

F2T = FN2 sinz3−FM2 cosz3−m2(ẍ f 1 + ẍ f 2)sinz3 +m2(ÿ f 1 + ÿ f 2 +g)cosz3−m2θ̇
2
f 2(xa2 sinη2− ya2 cosη2)

+m2(lp1 + lr1)(θ̈ f 1 cos(η1 + z1− z3)+ θ̇
2
f 1 sin(η1 + z1− z3))+m2θ̈ f 2(xa2 cosη2 + ya2 sinη2),

Fθ1 = MC1 +MC2− Ic1θ̈ f 1− Ic2θ̈ f 2 +m1ẍ f 1(xa1 sin(η1 + z1)− ya1 cos(η1 + z1))

−m1(g+ ÿ f 1)(xa1 cos(η1 + z1)+ ya1 sin(η1 + z1))

+FM2(X2 + x2 +(lp1 + lr1)cos(η1 + z1)+ lp2 cos(η2 + z3))+FM1lp1 cos(η1 + z1)

−FN2(Y2 + y2 +(lp1 + lr1)sin(η1 + z1)+ lp2 sin(η2 + z3))−m1θ̈ f 1(xa2
2 + ya2

2)−FN1lp1 sin(η1 + z1)

−(m2g+m2(ÿ f 1 + ÿ f 2))(X2 + x2 +(lp1 + lr1)cos(η1 + z1)+ xa2 cos(η2 + z3)+ ya2 sin(η2 + z3))

+m2(ẍ f 1 + ẍ f 2))(Y2 + y2 +(lp1 + lr1)sin(η1 + z1)+ xa2 sin(η2 + z3)− ya2 cos(η2 + z3))

−m2(ÿd2 +(lp1 + lr1)(θ̈ f 1 cosθ f 1− θ̇
2
f 1 sin(η1 + z1)))(X2 + x2)

−m2(ẍd2 +(lp1 + lr1)(θ̈ f 1 sin(η1 + z1)+ θ̇
2
f 1 cos(η1 + z1)))(Y2 + y2)

−m2(lp1 + lr1)(θ̈ f 1 + θ̈ f 2)(xa2 cos(η2 + z3−η1− z1)+ ya2 sin(η2 + z3−η1− z1))−m2θ̈ f 1(lp1 + lr1)
2

−m2(lp1 + lr1)(θ̇
2
f 1− θ̇

2
f 2)(xa2 sin(η2 + z3−η1− z1)− ya2 cos(η2 + z3−η1− z1))−m2θ̈ f 2(xa2

2 + ya2
2),

Fθ2 = MC2− Ic2θ̈ f 2−m2θ̈ f 2(xa2
2 + ya2

2)−FN2lp2 sin(η2 + z3)+FM2lp2 cos(η2 + z3)

+m2(ẍ f 1 + ẍ f 2)(xa2 sin(η2 + z3)− ya2 cos(η2 + z3))

−(m2g+m2(ÿ f 1 + ÿ f 2))(xa2 cos(η2 + z3)+ ya2 sin(η2 + z3)

−m2(lp1 + lr1)θ̈ f 1(xa2 cos(η2 + z3−η1− z1)+ ya2 sin(η2 + z3−η1− z1))

−m2(lp1 + lr1)θ̇
2
f 1(xa2 sin(η2 + z3−η1− z1)− ya2 cos(η2 + z3−η1− z1)). (A 3)

Expressions for the time derivatives are found using backward finite difference approximations of second
order with time step4t, with similar form to those in (4.5).
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