2 research outputs found

    STATCOM and SVC with Wind Turbines

    Get PDF
    The large wind parks are the feasible solution in order to generate clean energy compared with conventional power plants. Therefore, the interest in the Wind Energy Conversion System (WECS) is quickly increasing to reduce the fossil fuels dependencies. While the penetration of the WECS increases into the grid, many of the technical challenges have appeared. Low voltage Ride Through (LVRT) is the new requirement which needs to be fulfill when the amount of wind power generation increases, to be able to guarantee the power system reliability and stability. The voltage dips that result from faults in the grid can lead to a loss generation unit. According to the LVRT, WTs are required to be always connect during the fault, and to support the power system by supplying reactive power to ensure grid stability. The main purpose of the thesis was to investigate that how the LVRT of Doubly Fed Induction Generator (DFIG) based Wind Turbine Generator (WTG) can be enhanced using shunt connected Flexible AC Transmission System (FACTS) devices Static Synchronous Compensator (STATCOM) and Static Var Compensator (SVC). The theoretical background related to the LVRT enhancement using STATCOM and SVC is performed, and results are verified by the simulation model. This thesis is constructed in 5 Chapters, Chapter 1 gives an overview about the problems related to wind power. Chapter 2 explains the different grid codes and different topologies of the wind turbine technologies. Chapter 3 explains the working principle, construction and applications of the STATCOM and SVC. A comprehensive comparison between the STATCOM and SVC is also explained in this chapter. The operation of DFIG wind turbine during voltage dip is analyzed by using the simulation model in the next Chapter. In the first case, the effect of a three-phase fault on the power system was analyzed without using any compensation device. The LVRT requirements were not fulfilled without any compensation device. Therefore, in the second case, SVC was added in the model. Some improvement was observed in this case, but it was not enough to fulfill very strict LVRT requirements such as German Grid Codes (GGCs).Therefore, in the third case, SVC is replaced by STATCOM to meet the LVRT requirement of GGCs. In the last case, three different ratings of STATCOM were utilized to see the effect on the grid voltage and reactive power support by STATCOMs. The key findings of this thesis work are reported by Chapter 5

    STATCOM and SVC with Wind Turbines

    Get PDF
    The large wind parks are the feasible solution in order to generate clean energy compared with conventional power plants. Therefore, the interest in the Wind Energy Conversion System (WECS) is quickly increasing to reduce the fossil fuels dependencies. While the penetration of the WECS increases into the grid, many of the technical challenges have appeared. Low voltage Ride Through (LVRT) is the new requirement which needs to be fulfill when the amount of wind power generation increases, to be able to guarantee the power system reliability and stability. The voltage dips that result from faults in the grid can lead to a loss generation unit. According to the LVRT, WTs are required to be always connect during the fault, and to support the power system by supplying reactive power to ensure grid stability. The main purpose of the thesis was to investigate that how the LVRT of Doubly Fed Induction Generator (DFIG) based Wind Turbine Generator (WTG) can be enhanced using shunt connected Flexible AC Transmission System (FACTS) devices Static Synchronous Compensator (STATCOM) and Static Var Compensator (SVC). The theoretical background related to the LVRT enhancement using STATCOM and SVC is performed, and results are verified by the simulation model. This thesis is constructed in 5 Chapters, Chapter 1 gives an overview about the problems related to wind power. Chapter 2 explains the different grid codes and different topologies of the wind turbine technologies. Chapter 3 explains the working principle, construction and applications of the STATCOM and SVC. A comprehensive comparison between the STATCOM and SVC is also explained in this chapter. The operation of DFIG wind turbine during voltage dip is analyzed by using the simulation model in the next Chapter. In the first case, the effect of a three-phase fault on the power system was analyzed without using any compensation device. The LVRT requirements were not fulfilled without any compensation device. Therefore, in the second case, SVC was added in the model. Some improvement was observed in this case, but it was not enough to fulfill very strict LVRT requirements such as German Grid Codes (GGCs).Therefore, in the third case, SVC is replaced by STATCOM to meet the LVRT requirement of GGCs. In the last case, three different ratings of STATCOM were utilized to see the effect on the grid voltage and reactive power support by STATCOMs. The key findings of this thesis work are reported by Chapter 5
    corecore