58,300 research outputs found
Magnetic Component of Quark-Gluon Plasma
We describe recent developments of the "magnetic scenario" of sQGP. We show
that at there is a dense plasma of monopoles, capable of
supporting metastable flux tubes. Their existence allows to quantitatively
explained the non-trivial -dependence of the static potential
energy calculated on the lattice. By molecular dynamics simulation we derived
transport properties (shear viscosity and diffusion constant) and showed that
the best liquid is given by most symmetric plasma, with 50%-50% of electric and
magnetic charges. The results are close to those of the ``perfect liquid''
observed at RHIC.Comment: Contribution to the 20th International Conference on Nucleus Nucleus
Collisions (Quark Matter 2008
Two-dimensional gases of generalized statistics in a uniform magnetic field
We study the low temperature properties of two-dimensional ideal gases of
generalized statistics in a uniform magnetic field. The generalized statistics
considered here are the parafermion statistics and the exclusion statistics.
Similarity in the behaviours of the parafermion gas of finite order and the
gas with exclusion coefficient at very low temperatures is noted. These
two systems become exactly equivalent at . Qumtum Hall effect with these
particles as charge carriers is briefly discussed.Comment: Latex file, 14 pages, 5 figures available on reques
Ageing and Temperature Influence on Polarization/Depolarization Current Behaviour of Paper Immersed in Natural Ester
Transformers play an important role in providing a reliable and efficient electricity supply and are one of the most critical equipments in electric power transmission and distribution systems. The most commonly used liquid in power transformers is mineral oil due to its low price and good properties. However the performance of mineral oil starts to be limited due to environmental consideration [1]. Natural ester insulating fluid offers fire safety, environment and insulation aging advantages over mineral oil and are found to be suitable for the use in transformer insulation system [1]. However, transformer owners require to assess the status of the cellulose insulation in transformer non-destructively. Polarization/depolarization Current (PDC) measurement [2] is one of the non-destructive techniques which have been used to achieve this aim. At the present, there are few publications about the PDC behaviour of natural ester-paper insulation, though the natural ester becomes more widely used in transformers. In this paper, the influence of ageing and temperature on the PDC behaviour of the paper immersed in natural ester and mineral oil were compared. Results show PDC technique can be used to assess the aging condition of the natural-ester paper insulation. The ageing and temperature have similar influence on the PDC behaviour of the paper immersed in natural ester and in mineral oil. The depolarization current of paper immersed in natural ester is lower than that immersed in mineral oil at the same test temperature. The depolarization current of the paper immersed in natural ester and mineral oil increase with the aging time increased. Therefore, the depolarization current can be used to indicate the aging status of natural ester-paper insulation
Users’ Continued Usage of Online Healthcare Virtual Communities: An Empirical Investigation in the Context of HIV Support Communities
This study uses data from an online HIV/AIDS health support virtual community to examine whether users’ emotional states and the social support they receive influence their continued usage. We adopt grief theory to conceptualize the negative emotions that people living with HIV/AIDS could experience. Linguistic analysis is used to measure the emotional states of the users and the informational and emotional support that they receive. Results show that users showing a higher level of disbelief and yearning are more likely to leave the community while those with a high level of anger and depression are more likely to stay on. Users who receive more informational support are more likely to leave once they have obtained the information they sought, but those who receive more emotional support are more likely to stay on. The findings of this study can help us better understand users’ support seeking behavior in online support VCs
Positive selection determines T cell receptor V beta 14 gene usage by CD8+ T cells.
We report here a mAb, 14-2, reactive with TCRs that include V beta 14. The frequency of V beta 14+ T cells varies with CD4 and CD8 subset and is controlled by the H-2 genes. Thus CD8+ T cells from H-2b mice include approximately 2.3% V beta 14+ T cells while CD8+ T cells from mice expressing K kappa include greater than 8% V beta 14+ T cells. In all strains examined, 7-8% of CD4+ T cells express V beta 14. The frequent usage of V beta 14 in CD8+ T cells of K kappa-expressing mice is a result of preferential positive selection of V beta 14+ CD8+ T cells as demonstrated by analysis of radiation chimeras. These studies demonstrate that H-2-dependent positive selection occurs in unmanipulated mice. Furthermore, the results imply that positive selection, and possibly H-2 restriction, can be strongly influenced by a V beta domain, with some independence from the beta-junctional sequence and alpha chain
Some Issues in a Gauge Model of Unparticles
We address in a recent gauge model of unparticles the issues that are
important for consistency of a gauge theory, i.e., unitarity and Ward identity
of physical amplitudes. We find that non-integrable singularities arise in
physical quantities like cross section and decay rate from gauge interactions
of unparticles. We also show that Ward identity is violated due to the lack of
a dispersion relation for charged unparticles although the Ward-Takahashi
identity for general Green functions is incorporated in the model. A previous
observation that the unparticle's (with scaling dimension d) contribution to
the gauge boson self-energy is a factor (2-d) of the particle's has been
extended to the Green function of triple gauge bosons. This (2-d) rule may be
generally true for any point Green functions of gauge bosons. This implies that
the model would be trivial even as one that mimics certain dynamical effects on
gauge bosons in which unparticles serve as an interpolating field.Comment: v1:16 pages, 3 figures. v2: some clarifications made and presentation
improved, calculation and conclusion not modified; refs added and updated.
Version to appear in EPJ
Space Charge Behaviour in Oil-Paper Insulation with Different Aging Condition
Oil-paper insulation system is widely used in power transformers and cables. The dielectric properties of oilpaper insulation play an important role in the reliable operation of power equipment. Oil-paper insulation degrades under a combined stress of thermal (the most important factor), electrical, mechanical, and chemical stresses during routine operations, which has great effect on the dielectric properties of oil-paper insulation [1]. Space charge in oil-paper insulation has a close relation to its electrical performance [1]. In this paper, space charge behaviour of oil-paper insulation sample with three different ageing conditions (aged for 0, 35 and 77 days) was investigated using the pulsed electroacoustic (PEA) technique. The influence of aging on the space charge dynamics behaviour was analysed. Results show that aging has great effect on the space charge dynamics of oil-paper insulation. The homocharge injection takes place under all three aging conditions above. Positive charges tend to accumulate in the sample, and increase with the oil-paper insulation sample deterioration. The time to achieve the maximum injection charge density is 30s, 2min and 10min for oil-paper insulation sample aged for 0, 35 and 77 days, respectively. The maximum charge density injected in the sample aged for 77 days is more than two times larger than the initial sample. In addition, the charge decay speed becomes much slower with the aging time increase. There is an exponential relationship between the total charge amount and the decay time. The decay time constant ? increases with the increasing deterioration condition of the oil-paper insulation sample. The ? value may be used to reflect the aging status of oil-paper insulation
Material modelling and springback analysis for multi-stage rotary draw bending of thin-walled tube using homogeneous anisotropic hardening model
The aim of this paper is to compare several hardening models and to show their relevance for the prediction of springback and deformation of an asymmetric aluminium alloy tube in multi-stage rotary draw bending process. A three-dimensional finite-element model of the process is developed using the ABAQUS code. For material modelling, the newly developed homogeneous anisotropic hardening model is adopted to capture the Bauschinger effect and transient hardening behaviour of the aluminium alloy tube subjected to non-proportional loading. The material parameters of the hardening model are obtained from uniaxial tension and forward-reverse shear test results of tube specimens. This work shows that this approach reproduces the transient Bauschinger behaviour of the material reasonably well. However, a curve-crossing phenomenon observed for this material cannot be captured by the homogeneous anisotropic hardening model. For comparison purpose, the isotropic and combined isotropic-kinematic hardening models are also adopted for the analysis of the same problem. The predictions of springback and cross-section deformation based on these models are discussed. (C) 2014 The Authors. Published by Elsevier Ltd.open1134Nsciescopu
Enhancing Perceptual Attributes with Bayesian Style Generation
Deep learning has brought an unprecedented progress in computer vision and
significant advances have been made in predicting subjective properties
inherent to visual data (e.g., memorability, aesthetic quality, evoked
emotions, etc.). Recently, some research works have even proposed deep learning
approaches to modify images such as to appropriately alter these properties.
Following this research line, this paper introduces a novel deep learning
framework for synthesizing images in order to enhance a predefined perceptual
attribute. Our approach takes as input a natural image and exploits recent
models for deep style transfer and generative adversarial networks to change
its style in order to modify a specific high-level attribute. Differently from
previous works focusing on enhancing a specific property of a visual content,
we propose a general framework and demonstrate its effectiveness in two use
cases, i.e. increasing image memorability and generating scary pictures. We
evaluate the proposed approach on publicly available benchmarks, demonstrating
its advantages over state of the art methods.Comment: ACCV-201
- …
