23,802 research outputs found

    Hole burning in a nanomechanical resonator coupled to a Cooper pair box

    Full text link
    We propose a scheme to create holes in the statistical distribution of excitations of a nanomechanical resonator. It employs a controllable coupling between this system and a Cooper pair box. The success probability and the fidelity are calculated and compared with those obtained in the atom-field system via distinct schemes. As an application we show how to use the hole-burning scheme to prepare (low excited) Fock states.Comment: 7 pages, 10 figure

    Avalanche-Induced Current Enhancement in Semiconducting Carbon Nanotubes

    Full text link
    Semiconducting carbon nanotubes under high electric field stress (~10 V/um) display a striking, exponential current increase due to avalanche generation of free electrons and holes. Unlike in other materials, the avalanche process in such 1D quantum wires involves access to the third sub-band, is insensitive to temperature, but strongly dependent on diameter ~exp(-1/d^2). Comparison with a theoretical model yields a novel approach to obtain the inelastic optical phonon emission length, L_OP,ems ~ 15d nm. The combined results underscore the importance of multi-band transport in 1D molecular wires

    Impulse Elimination and Fault-Tolerant Preview Controller Design for a Class of Descriptor Systems

    Get PDF
    In this paper, a fault-tolerant preview controller is designed for a class of impulse controllable continuous time descriptor systems with sensor faults. Firstly, the impulse is eliminated by introducing state prefeedback; then an algebraic equation and a normal control system are obtained by restricted equivalent transformation for the descriptor system after impulse elimination. Next, the model following problem in fault-tolerant control is transformed into the optimal regulation problem of the augmented system which is constructed by a general method. And the final augmented system and its corresponding performance index function are obtained by state feedback for the augmented system constructed above. The controller with preview effect for the final augmented system is attained based on the existing conclusions of optimal preview control; then, the fault-tolerant preview controller for the original system is obtained through integral and backstepping. The relationships between the stabilisability and detectability of the final augmented system and the corresponding characteristics of the original descriptor system are also strictly discussed. The effectiveness of the proposed method is verified by numerical simulation

    A Case for Redundant Arrays of Hybrid Disks (RAHD)

    Get PDF
    Hybrid Hard Disk Drive was originally concepted by Samsung, which incorporates a Flash memory in a magnetic disk. The combined ultra-high-density benefits of magnetic storage and the low-power and fast read access of NAND technology inspires us to construct Redundant Arrays of Hybrid Disks (RAHD) to offer a possible alternative to today’s Redundant Arrays of Independent Disks (RAIDs) and/or Massive Arrays of Idle Disks (MAIDs). We first design an internal management system (including Energy-Efficient Control) for hybrid disks. Three traces collected from real systems as well as a synthetic trace are then used to evaluate the RAHD arrays. The trace-driven experimental results show: in the high speed mode, a RAHD outplays the purely-magnetic-disk-based RAIDs by a factor of 2.4–4; in the energy-efficient mode, a RAHD4/5 can save up to 89% of energy at little performance degradationPeer reviewe

    MIR-455 induces chondrogenesis by inhibiting Runx2

    Get PDF

    Cooperative optimal preview tracking for linear descriptor multi-agent systems

    Get PDF
    © 2018 The Franklin Institute. In this paper, a cooperative optimal preview tracking problem is considered for continuous-time descriptor multi-agent systems with a directed topology containing a spanning tree. By the acyclic assumption and state augmentation technique, it is shown that the cooperative tracking problem is equivalent to local optimal regulation problems of a set of low-dimensional descriptor augmented subsystems. To design distributed optimal preview controllers, restricted system equivalent (r.s.e.) and preview control theory are first exploited to obtain optimal preview controllers for reduced-order normal subsystems. Then, by using the invertibility of restricted equivalent relations, a constructive method for designing distributed controller is presented which also yields an explicit admissible solution for the generalized algebraic Riccati equation. Sufficient conditions for achieving global cooperative preview tracking are proposed proving that the distributed controllers are able to stabilize the descriptor augmented subsystems asymptotically. Finally, the validity of the theoretical results is illustrated via numerical simulation

    Flow Equations for U_k and Z_k

    Get PDF
    By considering the gradient expansion for the wilsonian effective action S_k of a single component scalar field theory truncated to the first two terms, the potential U_k and the kinetic term Z_k, I show that the recent claim that different expansion of the fluctuation determinant give rise to different renormalization group equations for Z_k is incorrect. The correct procedure to derive this equation is presented and the set of coupled differential equations for U_k and Z_k is definitely established.Comment: 5 page

    Renormalization Group and Universality

    Full text link
    It is argued that universality is severely limited for models with multiple fixed points. As a demonstration the renormalization group equations are presented for the potential and the wave function renormalization constants in the O(N)O(N) scalar field theory. Our equations are superior compared with the usual approach which retains only the contributions that are non-vanishing in the ultraviolet regime. We find an indication for the existence of relevant operators at the infrared fixed point, contrary to common expectations. This result makes the sufficiency of using only renormalizable coupling constants in parametrizing the long distance phenomena questionable.Comment: 32pp in plain tex; revised version to appear in PR

    Zinc oxide tetrapods as efficient photocatalysts for organic pollutant degradation

    Get PDF
    Bisphenol A (BPA) and other organic pollutants from industrial wastewater have drawn increasing concern in the past decades regarding their environmental and biological risks, and hence developing strategies of effective degradation of BPA and other organic pollutants is imperative. Metal oxide nanostructures, in particular titanium oxide (TiO2) and zinc oxide (ZnO), have been demonstrated to exhibit efficient photodegradation of various common organic dyes. ZnO tetrapods are of special interest due to their low density of native defects which consequently lead to lower recombination losses and higher photocatalytic efficiency. Tetrapods can be obtained by relatively simple and low-cost vapor phase deposition in large quantity; the micron-scale size would also be advantageous for catalyst recovery. In this study, the photodegradation of BPA with ZnO tetrapods and TiO2 nanostructures under UV illumination were compared. The concentration of BPA dissolved in DI water was analyzed by high-performance liquid chromatography (HPLC) at specified time intervals. It was observed that the photocatalytic efficiency of ZnO tetrapods eventually surpassed Degussa P25 in free-standing form, and more than 80% of BPA was degraded after 60 min. Photodegradation of other organic dye pollutants by tetrapods and P25 were also examined. The superior photocatalytic efficiency of ZnO tetrapods for degradation of BPA and other organic dye pollutants and its correlation with the material properties were discussed. © 2015 SPIE.published_or_final_versio
    • …
    corecore