5 research outputs found

    Sequencing and Characterisation of Complete Mitochondrial DNA Genome for Trigonopoma pauciperforatum (Cypriniformes: Cyprinidae: Danioninae) with Phylogenetic Consideration

    Get PDF
    The Trigonopoma pauciperforatum or the redstripe rasbora is a cyprinid commonly found in marshes and swampy areas with slight acidic tannin-stained water in the tropics. In this study, the complete mitogenome sequence of T. pauciperforatum was first amplified in two parts using two pairs of overlapping primers and then sequenced. The size of the mitogenome is 16,707 bp, encompassing 22 transfer RNA genes, 13 protein-coding genes, two ribosomal RNA genes and a putative control region. Identical gene organisation was detected between this species and other family members. The heavy strand accommodates 28 genes while the light strand houses the remaining nine genes. Most protein-coding genes utilize ATG as start codon except for COI gene which uses GTG instead. The terminal associated sequence (TAS), central conserved sequence block (CSB-F, CSB-D and CSB-E) as well as variable sequence block (CSB-1, CSB-2 and CSB-3) are conserved in the control region. The maximum likelihood phylogenetic tree revealed the divergence of T. pauciperforatum from the basal region of the major clade, where its evolutionary relationships with Boraras maculatus, Rasbora cephalotaenia and R. daniconius are poorly resolved as suggested by the low bootstrap values. This work contributes towards the genetic resource enrichment for peat swamp conservation and comprehensive in-depth comparisons across other phylogenetic researches done on the Rasbora-related genus

    Sequencing and characterization of complete mitogenome DNA of Rasbora tornieri (Cypriniformes: Cyprinidae: Rasbora) and its evolutionary significance

    Get PDF
    The yellowtail rasbora (Rasbora tornieri) is a miniature ray-finned fish categorized under the genus Rasbora in the family of Cyprinidae. In this study, a complete mitogenome sequence of R. tornieri was sequenced using four primers targeting two halves of the mitogenome with overlapping flanking regions. The size of mitogenome was 16,573 bp, housing 22 transfer RNA genes, 13 protein-coding genes, two ribosomal RNA genes and a putative control region. Identical gene organization was detected between this species and other members of Rasbora genus. The heavy strand encompassed 28 genes while the light strand accommodated the other nine genes. Most protein-coding genes execute ATG as start codon, excluding COI and ND3 genes, which utilized GTG instead. The central conserved sequence blocks (CSB-E, CSB-F and CSB-D), variable sequence blocks (CSB-1, CSB-3 and CSB-2) as well as the terminal associated sequence (TAS) were conserved within the control region. The maximum likelihood phylogenetic family tree revealed the divergence of R. tornieri from the basal region of the Rasbora clade, where its evolutionary relationships with other Rasbora members are poorly resolved as indicated by the low bootstrap values. This work acts as window for further population genetics and molecular evolution studies of Rasbora genus in future

    Sequencing and characterisation of complete mitogenome DNA for Rasbora sarawakensis (Cypriniformes: Cyprinidae: Rasbora) with phylogenetic consideration

    Get PDF
    The Blueline Rasbora (Rasbora sarawakensis) is a small ray-finned fish categorized under the genus Rasbora in the Cyprinidae family. In this study, the complete mitogenome sequence of R. sarawakensis was sequenced using four primers targeting overlapping regions. The mitogenome is 16,709 bp in size, accommodating 22 transfer RNA genes, 13 protein-coding genes, two ribosomal RNA genes and a putative control region. Identical gene organisation was detected between this species and other genus counterparts. The heavy strand houses 28 genes while the light strand stores the other nine genes. Most protein-coding genes employ ATG as start codon, excluding COI gene, which utilizes GTG instead. The central conserved sequence blocks (CSB-F, CSB-E and CSB-D), variable sequence blocks (CSB-3, CSB-2 and CSB-1) as well as the terminal associated sequence (TAS) are conserved in the control region. The maximum likelihood phylogenetic tree revealed the divergence of R. sarawakensis from the basal region of the Rasbora clade, where its evolutionary relationships with R. maculatus and R. pauciperforata are poorly resolved as indicated by the low bootstrap values. This work acts as steppingstone towards further molecular evolution and population genetics studies of Rasbora genus in future

    The Predictive Value of Gut Microbiota Composition for Sustained Immunogenicity following Two Doses of CoronaVac

    No full text
    CoronaVac immunogenicity decreases with time, and we aimed to investigate whether gut microbiota associate with longer-term immunogenicity of CoronaVac. This was a prospective cohort study recruiting two-dose CoronaVac recipients from three centres in Hong Kong. We collected blood samples at baseline and day 180 after the first dose and used chemiluminescence immunoassay to test for neutralizing antibodies (NAbs) against the receptor-binding domain (RBD) of wild-type SARS-CoV-2 virus. We performed shotgun metagenomic sequencing performed on baseline stool samples. The primary outcome was the NAb seroconversion rate (seropositivity defined as NAb ≥ 15AU/mL) at day 180. Linear discriminant analysis [LDA] effect size analysis was used to identify putative bacterial species and metabolic pathways. A univariate logistic regression model was used to derive the odds ratio (OR) of seropositivity with bacterial species. Of 119 CoronaVac recipients (median age: 53.4 years [IQR: 47.8–61.3]; male: 39 [32.8%]), only 8 (6.7%) remained seropositive at 6 months after vaccination. Bacteroides uniformis (log10LDA score = 4.39) and Bacteroides eggerthii (log10LDA score = 3.89) were significantly enriched in seropositive than seronegative participants. Seropositivity was associated with B. eggerthii (OR: 5.73; 95% CI: 1.32–29.55; p = 0.022) and B. uniformis with borderline significance (OR: 3.27; 95% CI: 0.73–14.72; p = 0.110). Additionally, B. uniformis was positively correlated with most enriched metabolic pathways in seropositive vaccinees, including the superpathway of adenosine nucleotide de novo biosynthesis I (log10LDA score = 2.88) and II (log10LDA score = 2.91), as well as pathways related to vitamin B biosynthesis, all of which are known to promote immune functions. In conclusion, certain gut bacterial species (B. eggerthii and B. uniformis) and metabolic pathways were associated with longer-term CoronaVac immunogenicity
    corecore