279 research outputs found

    MiR-138 ameliorates myocardial ischemia/reperfusion injury by targeting intercellular cell adhesion molecule 1

    Get PDF
    Purpose: To explore the effect of miR-138 on regulating intercellular cell adhesion molecule 1 (ICAM-1) expression in endothelial cells to alleviate cardiac ischemia/reperfusion (I/R) injury and its related mechanisms. Methods: The left anterior descending artery of the heart was occluded for 30 min and then perfused for 2 h to induce a rat model of cardiac I/R injury. H9C2 cells were cultured in an anoxic medium without serum to establish the model of hypoxia/reoxygenation (H/R). Triphenyl tetrazolium chloride (TTC) staining was applied to measure myocardial infarction sizes in rat hearts. The mRNA expression levels of miR-138 and ICAM-1 were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Dual luciferase reporter assay was used to identify the target of miR-138. The agomiR-138 and miR-138 mimics were transfected into H9C2 cells; exogenous ICAM-1 was also administered, and ROS accumulation, cell viability, and apoptosis were measured. Furthermore, the underlying mechanism was investigated. Results: MiR-138 was downregulated both in vitro and in vivo. AgomiR-138 reduced myocardial infarction area, decreased ROS production and suppressed cell apoptosis in a rat model of cardiac I/R injury. On the other hand, miR-138 mimics increased cell viability, enhanced ROS production and induced cell apoptosis in H/R-induced H9C2 cells. Further analysis verified ICAM-1 as a target of miR- 138. Besides, exogenous ICAM-1 inhibited the protective effect of miR-138 on H/R-induced apoptosis in vitro. Conclusion: MiR-138 may protect against injury of myocardial I/R by targeting ICAM-1. The results also provide insight into miR-138/ICAM-1 axis as new therapeutic targets for myocardial I/R injury. Keywords: Intercellular cell adhesion molecule 1, MicroRNA-138, Myocardial/ischemia reperfusion injury, Reactive oxygen specie

    Rietveld Structure Refinement of Cu-Trien Exchanged Nontronites

    Get PDF
    The Rietveld analysis of X-ray powder diffraction patterns is used widely for obtaining the structural information of clay minerals. However, the complex hydration behavior and the variability of interlayer contents are often considered difficult to be described correctly by a simple structure model. In the present work, the use of Cu-triethylenetetramine (Cu-trien)-exchanged nontronites has been proposed to simplify the interlayer structure. This method provides a potential to obtain the structural information of nontronites, for example, the layer charge density, occupancies of cis-octahedral sites, and the iron content by the Rietveld analysis from the X-ray powder diffraction patterns. The approach was demonstrated on three Cu-trien-exchanged nontronite samples. The Rietveld refinements were carried out first on the purified samples and the results showed a good peak fitting between measured and calculated patterns. The refined iron content and the occupancies of cis-octahedral sites are in general agreement with the reference data, which have been obtained from chemical and thermal analyses. The refinement of layer charge density showed lower values compared with the reference. It may be due to the assumption of temperature factor of Cu-trien in the interlayer. A raw sample with natural impurities was chosen to test the applicability of this method. The refinement pattern of the raw sample led to good agreement with the observed data. The results of the iron content and the occupancies of cis-octahedral sites showed the same tendency as purified samples. This study showed that this approach allows for obtaining some structural details of nontronites directly from X-ray powder diffraction patterns of Cu-trien-exchanged samples

    Translocation of Non-Canonical Polypeptides into Cells Using Protective Antigen

    Get PDF
    A variety of pathogenic bacteria infect host eukaryotic cells using protein toxins, which enter the cytosol and exert their cytotoxic effects. Anthrax lethal toxin, for example, utilizes the membrane-spanning translocase, protective antigen (PA) pore, to deliver the protein toxin lethal factor (LF) from the endosome into the cytosol of cells. Previous work has investigated the delivery of natural peptides and enzymatic domains appended to the C-terminus of the PA-binding domain of lethal factor (LF[subscript N]) into the cytosol via PA pore. Here, we move beyond natural amino acids and systematically investigate the translocation of polypeptide cargo containing non-canonical amino acids and functionalities through PA pore. Our results indicate translocation is not perturbed with alterations to the peptide backbone or side-chain. Moreover, despite their structural complexity, we found that the small molecule drugs, doxorubicin and monomethyl auristatin F (MMAF) translocated efficiently through PA pore. However, we found cyclic peptides and the small molecule drug docetaxel abrogated translocation due to their large size and structural rigidity. For cargos that reached the cytosol, we demonstrated that each remained intact after translocation. These studies show PA is capable of translocating non-canonical cargo provided it is in a conformational state conducive for passage through the narrow pore.MIT Start-up FundsMassachusetts Institute of Technology. Charles E. Reed Faculty Initiative FundDamon Runyon Cancer Research Foundation (Innovation Award)National Science Foundation (U.S.) (CAREER Award CHE-1351807)National Science Foundation (U.S.). Graduate Research Fellowshi

    Antibacterial sensitizers from natural plants: A powerful weapon against methicillin-resistant Staphylococcus aureus

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is a drug-resistant bacterium that can cause a range of infections with high morbidity and mortality, including pneumonia, etc. Therefore, development of new drugs or therapeutic strategies against MRSA is urgently needed. Increasing evidence has shown that combining antibiotics with “antibacterial sensitizers” which itself has no effect on MRSA, is highly effective against MRSA. Many studies showed the development of antibacterial sensitizers from natural plants may be a promising strategy against MRSA because of their low side effects, low toxicity and multi-acting target. In our paper, we first reviewed the resistance mechanisms of MRSA including “Resistance to Beta-Lactams”, “Resistance to Glycopeptide antibiotics”, “Resistance to Macrolides, Aminoglycosides, and Oxazolidinones” etc. Moreover, we summarized the possible targets for antibacterial sensitizers against MRSA. Furthermore, we reviewed the synergy effects of active monomeric compounds from natural plants combined with antibiotics against MRSA and their corresponding mechanisms over the last two decades. This review provides a novel approach to overcome antibiotic resistance in MRSA

    Prognostic value of long non-coding RNA MALAT1 in hepatocellular carcinoma: A study based on multi-omics analysis and RT-PCR validation

    Get PDF
    Background: This study aimed to explore the relationship between MALAT1 and the prognosis of patients with hepatocellular carcinoma (HCC).Methods: We constructed a MALAT1 protein-protein interaction network using the STRING database and a network of competing endogenous RNAs (ceRNAs) using the StarBase database. Using data from the GEPIA2 database, we studied the association between genes in these networks and survival of patients with HCC. The potential mechanisms underlying the relationship between MALAT1 and HCC prognosis were studied using combined data from RNA sequencing, DNA methylation, and somatic mutation data from The Cancer Genome Atlas (TCGA) liver cancer cohort. Tumor tissues and 19 paired adjacent non-tumor tissues (PANTs) from HCC patients who underwent radical resection were analyzed for MALAT1 mRNA levels using real-time PCR, and associations of MALAT1 expression with clinicopathological features or prognosis of patients were analyzed using log-rank test and Gehan-Breslow-Wilcoxon test.Results: Five interacting proteins and five target genes of MALAT1 in the ceRNA network significantly correlated with poor survival of patients with HCC (p < 0.05). High MALAT1 expression was associated with mutations in two genes leading to poor prognosis and may upregulate some prognostic risk genes through methylation. MALAT1 was significantly co-expressed with various signatures of genes involved in HCC progression, including the cell cycle, DNA damage repair, mismatch repair, homologous recombination, molecular cancer m6A, exosome, ferroptosis, infiltration of lymphocyte (p < 0.05). The expression of MALAT1 was markedly upregulated in HCC tissues compared with PANTs. In Kaplan-Meier analysis, patients with high MALAT1 expression had significantly shorter progression-free survival (PFS) (p = 0.033) and overall survival (OS) (p = 0.023) than those with low MALAT1 expression. Median PFS was 19.2 months for patients with high MALAT1 expression and 52.8 months for patients with low expression, while the corresponding median OS was 40.5 and 78.3 months. In subgroup analysis of patients with vascular invasion, cirrhosis, and HBsAg positive or AFP positive, MALAT1 overexpression was significantly associated with shorter PFS and OS. Models for predicting PFS and OS constructed based on MALAT1 expression and clinicopathological features had moderate predictive power, with areas under the receiver operating characteristic curves of 0.661–0.731. Additionally, MALAT1 expression level was significantly associated with liver cirrhosis, vascular invasion, and tumor capsular infiltration (p < 0.05 for all).Conclusion:MALAT1 is overexpressed in HCC, and higher expression is associated with worse prognosis. MALAT1 mRNA level may serve as a prognostic marker for patients with HCC after hepatectomy

    Rapid Flow-Based Peptide Synthesis

    Get PDF
    A flow-based solid-phase peptide synthesis methodology that enables the incorporation of an amino acid residue every 1.8 min under automatic control or every 3 min under manual control is described. This is accomplished by passing a stream of reagent through a heat exchanger into a low volume, low backpressure reaction vessel, and through a UV detector. These features enable continuous delivery of heated solvents and reagents to the solid support at high flow rate, thereby maintaining maximal concentration of reagents in the reaction vessel, quickly exchanging reagents, and eliminating the need to rapidly heat reagents after they have been added to the vessel. The UV detector enables continuous monitoring of the process. To demonstrate the broad applicability and reliability of this method, it was employed in the total synthesis of a small protein, as well as dozens of peptides. The quality of the material obtained with this method is comparable to that for traditional batch methods, and, in all cases, the desired material was readily purifiable by RP-HPLC. The application of this method to the synthesis of the 113-residue Bacillus amyloliquefaciens RNase and the 130-residue DARPin pE59 is described in the accompanying manuscript.MIT Faculty Start-up FundMassachusetts Institute of Technology (Charles E. Reed Faculty Initiative Fund)Deshpande Center for Technological InnovationDamon Runyon-Rachleff (Innovation Award)Sontag Foundation (Distinguished Scientist Award)C. P. Chu and Y. Lai FellowshipDaniel S. Kemp Summer FellowshipNational Institute of General Medical Sciences (U.S.). Biotechnology Training Program (Grant 5T32GM008334-25)National Institutes of Health (U.S.) (Fellowship F32GM101762

    Cancer-Associated Fibroblasts Accelerate Malignant Progression of Non-Small Cell Lung Cancer via Connexin 43-Formed Unidirectional Gap Junctional Intercellular Communication

    Get PDF
    Background/Aims: Gap junctions, which are assembled by connexins, can directly connect the cytoplasm of adjacent cells and enable gap junctional intercellular communication (GJIC) as well as metabolic coupling between neighboring cells. Here, we investigated the role of connexin 43 (Cx43) and its derived GJIC in the interplay between non-small cell lung cancer (NSCLC) cells and cancer-associated fibroblasts (CAFs). Methods: CAFs and NSCLC cells were co-cultured with direct contact and separated using flow cytometry. Glucose uptake, lactate production, and the expression and activity of PKM-2 and LDH-A in sorted CAFs were measured by a colorimetric assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). Meanwhile, E-cadherin and N-cadherin expression and the migration and invasion of sorted NSCLC cells were detected by western blotting, wound width, and Transwell assays. Pyruvate, acetyl-CoA, and citric acid levels, ATP levels, and LDH-B and α-KG activity in sorted NSCLC cells were determined by a colorimetric or fluorometric assay and ELISA, respectively. Functional GJIC between cells and the subcellular location of connexins were detected by a “Parachute” assay and immunofluorescence. Levels of α-SMA, Cx43, and LDH-B in tissue from patients with NSCLC were determined by immunohistochemistry. Results: Cx43 accumulated in the plasma membrane, which favored the assembly of asymmetric unidirectional GJIC from CAFs to NSCLC cells. CAFs underwent increased aerobic glycolysis and promoted the epithelial-mesenchymal transition, migration, and invasion of NSCLC cells. In contrast, NSCLC cells experienced enhanced oxidative phosphorylation upon CAF stimulation, with an increase in ATP generation and thereby activation of the PI3K/Akt and MAPK/ERK pathways. Metabolic coupling between CAFs and NSCLC cells was under the strict control of Cx43-formed unidirectional GJIC. Patients with high tri-expression of α-SMA, Cx43, and LDH-B had the shortest overall survival and relapse-free survival compared with those with individual overexpression or high bi-expression. Conclusion: Cx43-formed unidirectional GJIC plays a critical role in mediating close metabolic cooperation between CAFs and NSCLC cells to support the malignant progression of NSCLC
    • …
    corecore