21 research outputs found

    Development of a Transferable Reactive Force Field of P/H Systems: Application to the Chemical and Mechanical Properties of Phosphorene

    Full text link
    ReaxFF provides a method to model reactive chemical systems in large-scale molecular dynamics simulations. Here, we developed ReaxFF parameters for phosphorus and hydrogen to give a good description of the chemical and mechanical properties of pristine and defected black phosphorene. ReaxFF for P/H is transferable to a wide range of phosphorus and hydrogen containing systems including bulk black phosphorus, blue phosphorene, edge-hydrogenated phosphorene, phosphorus clusters and phosphorus hydride molecules. The potential parameters were obtained by conducting unbiased global optimization with respect to a set of reference data generated by extensive ab initio calculations. We extend ReaxFF by adding a 60{\deg} correction term which significantly improves the description of phosphorus clusters. Emphasis has been put on obtaining a good description of mechanical response of black phosphorene with different types of defects. Compared to nonreactive SW potential [1], ReaxFF for P/H systems provides a huge improvement in describing the mechanical properties the pristine and defected black phosphorene and the thermal stability of phosphorene nanotubes. A counterintuitive phenomenon is observed that single vacancies weaken the black phosphorene more than double vacancies with higher formation energy. Our results also show that mechanical response of black phosphorene is more sensitive to defects for the zigzag direction than for the armchair direction. Since ReaxFF allows straightforward extensions to the heterogeneous systems, such as oxides, nitrides, ReaxFF parameters for P/H systems build a solid foundation for the reactive force field description of heterogeneous P systems, including P-containing 2D van der Waals heterostructures, oxides, etc

    Curvature-controlled delamination patterns of thin films on spherical substrates

    No full text
    Summary: Periodic delamination patterns in multilayer structures have exhibited extensive applications in microelectronics and optics devices. However, delamination behaviors of a closed thin shell on spherical substrates are still elusive. Herein, a unique instability mechanism of buckle delamination in a closed thin film weakly bonded to spherical substrates is studied by experiments, simulations, and theoretical analyses. The system of an Al film depositing on polystyrene spheres subjected to thermal mismatch strain is used for demonstration. Unlike traditional phenomena of wrinkling and wrinkle-induced delamination under increasing misfit strain, the weak adhesion between the core and shell results in a periodic pattern of delaminated hexagonal dimples that emerges directly from the smooth sphere configuration, before which no wrinkling occurs. Both substrate curvature and interfacial adhesion are revealed to control the dimple size and delamination width. These findings open a new venue for manifesting new controllable features for surface microfabrication
    corecore